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Part IV

Term Structure Modelling
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Outline
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Hull-White Model

Special Topic: Options on Overnight Rates



p. 228

What are term structure models compared to Vanilla
models?

Vanilla models Term structure models

▶ Specify dynamics for a
single swap rate S(T ) with
start/end dates T0/Tn (and
details).

▶ Effectively, only describes
terminal distribution of
S(T ).

▶ Allows pricing of European
swaptions.

▶ Can be extended to slightly
more complex options (with
additional assumptions).

▶ Specify dynamics for
evolution of all future zero
coupon bonds P(T , T ′)
(t ≤ T ≤ T ′).

▶ Yields (joint) distribution of
all swap rates S(T ).

▶ Allows pricing of Bermudan
swaptions and other
complex derivatives.

▶ Typically, computationally
more expensive than Vanilla
model pricing.
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Why do we need to model the whole term structure of
interest rates?

Recall

V Berm(t) = MaxEuropean + SwitchOption.

▶ MaxEuropean price is fully determined by Vanilla model.

▶ Residual SwitchOption price cannot be inferred from Vanilla model.

SwitchOption (i.e. right to postpone future exercise decisions) pricing
requires modelling of full interest rate term structure.
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Outline
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Heath-Jarrow-Morton specify general dynamics of zero
coupon bond prices

Recall our market setting with zero coupon bonds P(t, T ) (t ≤ T ) and

bank account B(t) = exp
{∫ t

0
r(s)ds

}

.

Discounted bond price is martingale in risk-neutral measure.

Martingale representation theorem yields

d

(
P(t, T )

B(t)

)

= −
P(t, T )

B(t)
· σP(t, T )⊤ · dW (t)

where σP(t, T ) = σP(t, T , ω) is a d-dimensional process adapted to Ft .
We also impose σP(T , T ) = 0 (pull-to-par for bond prices with
P(T , T ) = 1).

▶ What are dynamics of (un-discounted) zero bonds P(t, T )?

▶ What are dynamics of forward rates f (t, T )?

▶ How to specify bond price volatility?
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What are dynamics of zero bonds P(t, T )?

Lemma (Bond price dynamics)
Under the risk-neutral measure zero bond prices evolve according to

dP(t, T )

P(t, T )
= r(t) · dt − σP(t, T )⊤ · dW (t).

Proof.
Apply Ito’s lemma to d (P(t, T )/B(t)) and compare with dynamics of
discounted bond prices.

▶ Zero bond drift equals short rate r(t).

▶ Zero bond volatility σP(t, T ) remains unchanged.

▶ How do we get r(t)?
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What are dynamics of forward rates f (t, T )?

Theorem (Forward rate dynamics)
Consider a d-dimensional forward rate volatility process
σf (t, T ) = σf (t, T , ω) adapted to Ft . Under the risk-neutral measure
the dynamics of forward rates f (t, T ) are given by

df (t, T ) = σf (t, T )⊤ ·

[
∫ T

t

σf (t, u)du

]

· dt + σf (t, T )⊤ · dW (t)

and f (0, T ) = f M(0, T ). Moreover

σP(t, T ) =

∫ T

t

σf (t, u)du.

▶ Once volatility σf (t, T ) is specified no-arbitrage pricing yields the
drift.

▶ Model is auto-calibrated to initial yield curve via
f (0, T ) = f M(0, T ).



p. 235

We prove the forward rate dynamics (1/2)
Recall

f (t, T ) = −
∂

∂T
ln (P(t, T )) .

Exchanging order of differentiation yields

df (t, T ) = d

[

−
∂

∂T
ln (P(t, T ))

]

= −
∂

∂T
d ln (P(t, T )) .

Applying Ito’s lemma (to d ln (P(t, T ))) with bond price dynamics yields

d ln (P(t, T )) =
d(P(t, T ))

P(t, T )
−

σP(t, T )⊤σP(t, T )

2
· dt

=

[

r(t) −
σP(t, T )⊤σP(t, T )

2

]

· dt − σP(t, T )⊤ · dW (t).

Differentiating d ln (P(t, T )) w.r.t. T gives

df (t, T ) =

[
∂

∂T
σP(t, T )

]⊤

σP(t, T ) · dt +

[
∂

∂T
σP(t, T )

]⊤

· dW (t).
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We prove the forward rate dynamics (2/2)

df (t, T ) =

[
∂

∂T
σP(t, T )

]⊤

σP(t, T ) · dt +

[
∂

∂T
σP(t, T )

]⊤

· dW (t).

Denote

σf (t, T ) =
∂

∂T
σP(t, T ).

With terminal condition σP(T , T ) = 0 follows integral representation

σP(t, T ) =

∫ T

t

σf (t, u)du.

Substituting back gives the result

df (t, T ) = σf (t, T )⊤ ·

[
∫ T

t

σf (t, u)du

]

· dt + σf (t, T )⊤ · dW (t).
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It will be useful to have the dynamics under the forward
measure as well

Lemma (Brownian motion in T -forward measure)
Consider our HJM framework with Brownian motion W (t) under the
risk-neutral measure and

dP(t, T )

P(t, T )
= r(t) · dt − σP(t, T )⊤ · dW (t).

Under the T -forward measure the bond price dynamics are

dP(t, T )

P(t, T )
=
[
r(t) + σP(t, T )⊤σP(t, T )

]
· dt − σP(t, T )⊤ · dW T (t)

with W T (t) a Brownian motion (under the T -forward measure).
Moreover,

dW T (t) = σP(t, T ) · dt + dW (t).



p. 238

T -forward measure dynamics can be shown by Ito’s lemma
(1/2)

Abbrev. deflated bond prices Y (t) = P(t,T )
B(t) , then

dY (t)
Y (t) = −σP(t, T )⊤dW (t).

Now consider 1/Y (t) and apply Ito’s lemma

d

(
1

Y (t)

)

= −
dY (t)

Y (t)2
+

1

2

2

Y (t)3
[dY (t)]

2
=

1

Y (t)

[(
dY (t)

Y (t)

)2

−
dY (t)

Y (t)

]

=
1

Y (t)

[
σP(t, T )⊤σP(t, T )dt + σP(t, T )⊤dW (t)

]

=
σP(t, T )⊤

Y (t)
[σP(t, T )dt + dW (t)] .
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T -forward measure dynamics can be shown by Ito’s lemma
(2/2)

However, 1/Y (t) = B(t)/P(t, T ) is a martingale in T -forward measure

and d
(

1
Y (t)

)

must be drift-less in T -forward measure.

Define W T (t) with

dW T (t) = σP(t, T )dt + dW (t).

Then W T (t) must be a Brownian motion in the T -forward measure.

Substituting dW (t) in the risk-neutral bond price dynamics finally gives
the dynamics under T -forward measure.
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Outline

HJM Modelling Framework
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Seperable HJM Dynamics
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Short rate can be derived from forward rate dynamics

Corollary (Short rate specification)
In our HJM framework the short rate becomes

r(t) = f (t, t)

= f (0, t)+
∫ t

0

σf (u, t)⊤ ·

[∫ t

u

σf (u, s)ds

]

du +

∫ t

0

σf (u, t)⊤ · dW (u).

Proof.
Follows directly from forward rate dynamics and integration from 0 to
t.

▶ Note that integrand in diffusion term D(t) =
∫ t

0
σf (u, t)⊤ · dW (u)

depends on t.

▶ In general, D(t) is not a martingale.

▶ In general, r(t) is not Markovian unless volatility σf (t, T ) is suitably
restricted.
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We analyse diffusion term in detail

D(t) =

∫ t

0

σf (u, t)⊤ · dW (u).

It follows

D(T ) =

∫ t

0

σf (u, T )⊤ · dW (u) +

∫ T

t

σf (u, T )⊤ · dW (u)

= D(t) +

∫ T

t

σf (u, T )⊤ · dW (u)

+

∫ t

0

σf (u, T )⊤ · dW (u) −

∫ t

0

σf (u, t)⊤ · dW (u)

= D(t) +

∫ T

t

σf (u, T )⊤ · dW (u) +

∫ t

0

[σf (u, T ) − σf (u, t)]
⊤

· dW (u).

▶ How is EQ [D(T ) | D(t)] (knowing only last state) related to
EQ [D(T ) | Ft ] (knowing full history)?

▶ If D is Markovian then EQ [D(T ) | D(t)] = EQ [D(T ) | Ft ]
(neccessary condition).
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Compare EQ [D(T ) | D(t)] and EQ [D(T ) | Ft ] (1/2)

EQ [D(T ) | Ft ] = EQ

[

D(t) +

∫ T

t

σf (u, T )⊤dW (u) | Ft

]

+ EQ

[∫ t

0

[σf (u, T ) − σf (u, t)]
⊤

dW (u) | Ft

]

= D(t) + 0 +

∫ t

0

[σf (u, T ) − σf (u, t)]
⊤

dW (u)

︸ ︷︷ ︸

I(t,T )

.

EQ [D(T ) | D(t)] = EQ

[

D(t) +

∫ T

t

σf (u, T )⊤dW (u) | D(t)

]

+ EQ

[∫ t

0

[σf (u, T ) − σf (u, t)]
⊤

dW (u) | D(t)

]

= D(t) + 0 + EQ

[∫ t

0

[σf (u, T ) − σf (u, t)]
⊤

dW (u) | D(t)

]

.
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Compare EQ [D(T ) | D(t)] and EQ [D(T ) | Ft ] (2/2)

EQ [D(T ) | Ft ] = D(t) +

∫ t

0

[σf (u, T ) − σf (u, t)]
⊤

dW (u)

︸ ︷︷ ︸

I(t,T )

.

EQ [D(T ) | D(t)] = D(t) + EQ

[∫ t

0

[σf (u, T ) − σf (u, t)]
⊤

dW (u) | D(t)

]

.

▶ EQ [D(T ) | D(t)] = EQ [D(T ) | Ft ] only if I(t, T ) is non-random or
deterministic function of D(t).
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An important separability condition makes D(t) Markovian
Assume

σf (t, T ) = g(t) · h(T )

with g(t) (scalar) process adapted to Ft and h(T ) (scalar) deterministic
and differentiable function.
Then

D(T ) =

∫ t

0

g(u) · h(T ) · dW (u) +

∫ T

t

g(u) · h(T ) · dW (u)

=
h(T )

h(t)
· D(t) + h(T ) ·

∫ T

t

g(u) · dW (u).

Thus

EQ [D(T ) | D(t)] = EQ [D(T ) | Ft ] =
h(T )

h(t)
· D(t).

Moreover

d (D(t)) =
h′(t)

h(t)
· D(t) · dt + g(t) · h(t) · dW (t).
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Outline
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Seperable HJM Dynamics



p. 247

We describe a very general but still tractable class of
models

▶ We give a general description of a class of term structure models.

▶ Typically, these models are called Cheyette-type or quasi-Gaussian
models; also associated with work by Ritchken and
Sankarasubramanian (1995).

▶ Particular parameter choices will specialise general model to classical
model (e.g. Hull-White model).

▶ More complex parameter choices yield powerful model instances for
complex interest rate derivatives.

Quasi-Gaussian models are important models in the industry.
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Separable forward rate volatility

Definition (Separable forward rate volatility)
The forward rate volatility σf (t, T ) of an HJM model is considered of
separable form if

σf (t, T ) = g(t)h(T )

for a matrix-valued process g(t) = g(t, ω) ∈ Rd×d adapted to Ft and a
vector-valued deterministic function h(T ) ∈ Rd .

Corollary
For a separable forward rate volatility σf (t, T ) = g(t)h(T ) the bond
price volatility σP(t, T ) becomes

σP(t, T ) = g(t)

∫ T

t

h(u)du.
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Forward rate representation follows directly

Lemma
For a separable forward rate volatility σf (t, T ) = g(t)h(T ) the forward
rate becomes

f (t, T ) = f (0, T )+

h(T )⊤

∫ t

0

g(s)⊤g(s)

(
∫ T

s

h(u)du

)

ds+

h(T )⊤

∫ t

0

g(s)⊤dW (s)

and

r(t) = f (0, t)+h(t)⊤

[∫ t

0

g(s)⊤g(s)

(∫ t

s

h(u)du

)

ds +

∫ t

0

g(s)⊤dW (s)

]

.

Proof.
Follows directly from definition.
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We need to introduce new state variables to derive
Markovian representation of short rate

Re-write h(t)⊤ = 1
⊤H(t) and

r(t) = f (0, t)+1
⊤H(t)

[∫ t

0

g(s)⊤g(s)

(∫ t

s

h(u)du

)

ds +

∫ t

0

g(s)⊤dW (s)

]

with

1 =






1
...
1




 and H(t) = diag (h(t)) =






h1(t) 0 0

0
. . . 0

0 0 hd(t)




 .

Introduce vector of state variables x(t) with

x(t) = H(t)

[∫ t

0

g(s)⊤g(s)

(∫ t

s

h(u)du

)

ds +

∫ t

0

g(s)⊤dW (s)

]

.



p. 251

We derive the dynamics of the short rate

Theorem (Separable HJM short rate dynamics)
In an HJM model with separable volatility the short rate is given by
r(t) = f (0, t) + 1

⊤x(t). The vector of state variables x(t) evolves
according to x(0) = 0 and

dx(t) = [y(t)1 − χ(t)x(t)] dt + H(t)g(t)⊤dW (t)

with symmetric matrix of auxilliary variables y(t) as

y(t) = H(t)

(∫ t

0

g(s)⊤g(s)ds

)

H(t)

and diagonal matrix of mean reversion parameters χ(t) as

χ(t) = −
dH(t)

dt
H(t)−1.
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Proof follows straight forward via differentiation (1/3)

We have

x(t) = H(t)

[∫ t

0

g(s)⊤g(s)

(∫ t

s

h(u)du

)

ds +

∫ t

0

g(s)⊤dW (s)

]

︸ ︷︷ ︸

G(t)

.

dx(t) = H ′(t) · G(t) · dt + H(t) · dG(t)

= H ′(t) · H(t)−1 · H(t) · G(t) · dt + H(t) · dG(t)

= −χ(t) · x(t) · dt + H(t) · dG(t).
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Proof follows straight forward via differentiation (2/3)

dx(t) = −χ(t) · x(t) · dt + H(t) · dG(t),

G(t) =

∫ t

0

g(s)⊤g(s)

(∫ t

s

h(u)du

)

ds +

∫ t

0

g(s)⊤dW (s).

Leibnitz rule yields

dG(t) =

[

g(t)⊤g(t)

(∫ t

t

h(u)du

)

+

∫ t

0

g(s)⊤g(s)
d

dt

(∫ t

s

h(u)du

)

ds

]

dt

+ g(t)⊤dW (t)

=

[

0 +

∫ t

0

g(s)⊤g(s) · H(t)1 · ds

]

dt + g(t)⊤dW (t)

=

[(∫ t

0

g(s)⊤g(s)ds

)

H(t)1

]

dt + g(t)⊤dW (t).
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Proof follows straight forward via differentiation (3/3)

Combining results gives

dx(t) = −χ(t) · x(t) · dt + H(t) · dG(t)

=

[

H(t)

(∫ t

0

g(s)⊤g(s)ds

)

H(t)1 − χ(t) · x(t)

]

dt

+ H(t) · g(t)⊤dW (t)

= [y(t) · 1 − χ(t) · x(t)] dt + H(t) · g(t)⊤dW (t).

▶ Note that dx(t) depends on accumulated previous volatility via
∫ t

0
g(s)⊤g(s)ds.

▶ x(t) is Markovian only if volatility function g(t) is deterministic.

▶ In general, short rate dynamics can be ammended by dynamics of
y(t).
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Short rate dynamics can be written in terms of state and
auxilliary variables (1/2)

Corollary (Augmented short rate dynamics)
In an HJM model with separable volatility the short rate is given via
r(t) = f (0, t) + 1

⊤x(t) with

dx(t) = [y(t) · 1 − χ(t) · x(t)] dt + σr (t)⊤dW (t),

dy(t) =
[
σr (t)⊤σr (t) − χ(t)y(t) − y(t)χ(t)

]
dt,

and x(0) = 0, y(0) = 0.
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Short rate dynamics can be written in terms of state and
auxilliary variables (2/2)

Proof.
Set σr (t) = g(t)H(t) and differentiate

y(t) = H(t)
(∫ t

0
g(s)⊤g(s)ds

)

H(t).

▶ Model class also called Cheyette or quasi-Gaussian models.

▶ Typically σr (t) and χ(t) are specified and σf (t, T ) is reconstructed
via

H ′(t) = − χ(t)H(t), H(0) = 1 and

g(t) =σr (t)H(t)−1.
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Forward rates and zero bonds can be written in terms of
state/auxilliary variables

Theorem (Forward rate and zero bond reconstruction)
In our HJM model setting we get

f (t, T ) = f (0, T ) + 1
⊤H(T )H(t)−1 [x(t) + y(t)G(t, T )]

and

P(t, T ) =
P(0, T )

P(0, t)
exp

{

−G(t, T )⊤x(t) −
1

2
G(t, T )⊤y(t)G(t, T )

}

with

G(t, T ) =

∫ T

t

H(u)H(t)−1
1du.

▶ We prove the first part for f (t, T ).

▶ And we sketch the proof for the second part for P(t, T ).
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We prove the first part for f (t, T ) (1/2)...

1
⊤H(T )H(t)−1x(t)
︸ ︷︷ ︸

I1

= h(T )T

[∫ t

0

g(s)⊤g(s)

(∫ t

s

h(u)du

)

ds +

∫ t

0

g(s)⊤dW (s)

]

.

1
⊤H(T )H(t)−1y(t)G(t, T )
︸ ︷︷ ︸

I2

= h(T )⊤

(∫ t

0

g(s)⊤g(s)ds

)∫ T

t

h(u)du.
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We prove the first part for f (t, T ) (2/2)...

I1 + I2

= h(T )⊤×
[
∫ t

0

g(s)⊤g(s)

(∫ t

s

h(u)du

)

ds +

(∫ t

0

g(s)⊤g(s)ds

)∫ T

t

h(u)du

]

+ h(T )T

∫ t

0

g(s)⊤dW (s)

= h(T )T ×
[
∫ t

0

g(s)⊤g(s)

(
∫ t

s

h(u)du +

∫ T

t

h(u)du

)

ds +

∫ t

0

g(s)⊤dW (s)

]

= h(T )T

[
∫ t

0

g(s)⊤g(s)

(
∫ T

s

h(u)du

)

ds +

∫ t

0

g(s)⊤dW (s)

]

= f (t, T ) − f (0, T )
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... and sketch the proof for the second part for P(t, T )
(1/2)

P(t, T ) = exp

{

−

∫ T

t

f (t, s)ds

}

= exp

{

−

∫ T

t

(

f (0, s) + 1
⊤H(s)H(t)−1 [x(t) + y(t)G(t, s)]

)

ds

}

=
P(0, T )

P(0, t)
· exp







−

(
∫ T

t

1
⊤H(s)H(t)−1ds

)

︸ ︷︷ ︸

G(t,T )⊤

x(t)







·

exp

{

−

∫ T

t

1
⊤H(s)H(t)−1y(t)G(t, s)ds

}
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... and sketch the proof for the second part for P(t, T )
(2/2)

It remains to show that

∫ T

t

1
⊤H(s)H(t)−1y(t)G(t, s)ds =

1

2
G(t, T )⊤y(t)G(t, T ).

We note that both sides of above equation are zero for T = t.
The equality for T > t follows then by differentiating both sides w.r.t. T
and comparing terms.
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Outline

HJM Modelling Framework

Hull-White Model

Special Topic: Options on Overnight Rates
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We take a complementary view to HJM framework and
consider direct modelling of the short rate r(t)

t

@
@
@
@
@

short rate r(t) = f (t, t)

We model short rate of the discount curve as offset point for future rates.
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Short rate suffices to specify evolution of the full yield
curve

Recall zero bond formula

P(t, T ) = EQ

[

exp

{

−

∫ T

t

r(s)ds

}

| Ft

]

.

▶ Once dynamics of r(t) are specified all zero bonds can be derived.

Libor rates (in multi-curve setting) are

L(t; T0, T1) = ET1 [L(T ; T0, T1) | Ft ] =

[
P(t, T0)

P(t, T1)
· D(T0, T1) − 1

]
1

τ
.

▶ With zero bonds P(t, T ) (and tenor basis factors D(T0, T1)) we can
also derive future Libor rates.

Short rate is a natural choice of state variable for modelling evolution of
interest rates.
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Outline

Hull-White Model
Classical Model Derivation
Relation to HJM Framework
Analytical Bond Option Pricing Formulas
General Payoff Pricing
Summary of Hull-White Pricing Formulas
European Swaption Pricing
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Vasicek model and Ho-Lee model were the first models for
the short rate

Vasicek (1977) assumed Ornstein-Uhlenbeck process

dr(t) = κ (θ − r(t)) dt + σdW (t), r(0) = r0

for positive constants r0, κ, θ, and σ.

▶ Model is not too different from HJM model representation.

▶ Constant parameters (in particular θ) limit ability to
reproduce/calibrate yield curve observed today.

Ho and Lee (1986) introduce exogenous time-dependent drift parameter,

dr(t) = θ(t)dt + σdW (t).

▶ Drift parameter θ(t) is used to match today’s zero bonds P(0, T ).

▶ Lack of mean reversion is considered main disadvantage.

▶ Model was historically used with binomial tree implementation.
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Hull and White (1990) extended Vasicek model by θ(t)

Definition (Hull-White model)
In the Hull-White model the short rate evolves according to

dr(t) = [θ(t) − a(t)r(t)] dt + σ(t)dW (t)

with deterministic scalar functions θ(t), a(t), and σ(t) > 0.

▶ θ(t) is mean reversion level,

▶ a(t) is mean reversion speed, and

▶ σ(t) is short rate volatility.

▶ Original reference is J. Hull and A. White. Pricing
interest-rate-derivative securities.
The Review of Financial Studies, 3:573–592, 1990

▶ To simplify analytical tractability we will assume
▶ constant mean reversion speed a(t) = a > 0, and
▶ piece-wise constant short rate volatility function on a siutable time

grid {t0, . . . , tk},

σ(t) =

k∑

i=1

1{ti−1≤t<ti } · σi .
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How do we calibrate the drift θ(t)?

Lemma (Hull-White drift calibration)
In the risk-neutral specification of the Hull-White model the drift term
θ(t) is given by

θ(t) =
∂

∂T
f (0, t) + a · f (0, t) +

∫ t

0

[

e−a(t−u)σ(u)
]2

du.

Here f (0, t) = f M(0, t) is exogenously specified and assumed
continuously differentiable w.r.t. the maturity T .

Proof follows along the following steps

▶ Calculate r(s) via integration.

▶ Integrate I(t, T ) =
∫ T

t
r(s)ds and calculate distribution of I(t, T ).5

▶ Derive θ(t) such that EQ
[
e−I(0,t)

]
= P(0, T ).

5We will re-use distribution of integrated short rate I(t, T ) later for options on
compounded rates.
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Proof (1/4) - calculate r(s)

We show that for s ≥ t

r(s) = e−a(s−t)

[

r(t) +

∫ s

t

ea(u−t) [θ(u)du + σ(u)dW (u)]

]

.

dr(s) = −ar(s)ds + e−a(s−t)
[

ea(s−t) [θ(s)ds + σ(s)dW (s)]
]

= [θ(s) − ar(s)] ds + σ(s)dW (s).

Use notation [·]
′
(t, T ) = ∂

∂T
[·]. Set I(t, T ) =

∫ T

t
r(s)ds, then

I ′(t, T ) = ∂I(t,T )
∂T

= r(T ). We show

I(t, T ) = G(t, T )r(t) +

∫ T

t

G(u, T ) [θ(u)du + σ(u)dW (u)]

with

G(t, T ) =

∫ T

t

e−a(u−t)du =

[
1 − e−a(T−t)

a

]

.
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Proof (2/4) - calculate distribution I(t, T )

I(t, T ) = G(t, T )r(t) +

∫ T

t

G(u, T ) [θ(u)du + σ(u)dW (u)] ,

I ′(t, T ) = G ′(t, T )r(t) + 0 +

∫ T

t

G ′(u, T ) [θ(u)du + σ(u)dW (u)]

= e−a(T−t)r(t) +

∫ T

t

e−a(T−u) [θ(u)du + σ(u)dW (u)]

= e−a(T−t)

[

r(t) +

∫ T

t

ea(u−t) [θ(u)du + σ(u)dW (u)]

]

= r(T ).

Conditional on Ft , integral is normally distributed, I(t, T )|Ft
∼ N(µ, σ2)

with

µ(t, T ) = G(t, T )r(t) +

∫ T

t

G(u, T )θ(u)du,

σ(t, T )2 =

∫ T

t

[G(u, T )σ(u)]
2

du.



p. 271

Proof (3/4) - calculate forward rate
I(t, T )|Ft

∼ N(µ, σ2) with

µ(t, T ) = G(t, T )r(t) +

∫ T

t

G(u, T )θ(u)du,

σ2(t, T ) =

∫ T

t

[G(u, T )σ(u)]
2

du.

P(t, T ) = EQ
[

e−I(t,T ) | Ft

]

= e−µ(t,T )+ 1
2 σ2(t,T ).

f (t, T ) = −
∂

∂T
ln [P(t, T )] =

d

dT

[

µ(t, T ) −
1

2
σ2(t, T )

]

= G ′(t, T )r(t) + 0 +

∫ T

t

G ′(u, T )θ(u)du

−
1

2

[

0 +

∫ T

t

2G(u, T )G ′(u, T )σ(u)2du

]

= G ′(t, T )r(t) +

∫ T

t

G ′(u, T )θ(u)du −

∫ T

t

G ′(u, T )G(u, T )σ(u)2du.
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Proof (4/4) - derive drift θ(t)

f (t, T ) = G ′(t, T )r(t)+

∫ T

t

G ′(u, T )θ(u)du−

∫ T

t

G ′(u, T )G(u, T )σ(u)2du.

Use G ′(t, T ) = e−a(T−t) and G ′′(t, T ) = −aG ′(t, T ), then

f ′(t, T ) = G ′′(t, T )r(t) + θ(T ) +

∫ T

t

G ′(u, T )θ(u)du − 0

−

∫ T

t

[
G ′′(u, T )G(u, T ) + G ′(u, T )2

]
σ(u)2du

= θ(T ) − af (t, T ) −

∫ T

t

[G ′(u, T )σ(u)]
2

du.

This finally gives the result (with t = 0)

θ(T ) = f ′(t, T ) + af (t, T ) +

∫ T

t

[G ′(u, T )σ(u)]
2

du

= f ′(0, T ) + af (0, T ) +

∫ T

0

[

e−a(T−u)σ(u)
]2

du.
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Do we really need the drift θ(t)?

▶ Risk-neutral drift representation

θ(t) =
∂

∂T
f (0, t) + a · f (0, t) +

∫ t

0

[

e−a(t−u)σ(u)
]2

du

poses some obstacles.

▶ Derivative ∂
∂T

f (0, t) may cause numerical difficulties.

▶ In some market situations you want to have jumps in f (0, t).

▶ This is relevant in particular for the short end of OIS curve.

▶ Fortunately, for most applications we don’t need drift term.

▶ HJM representation allows avoiding it alltogether.
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Now we can also derive future zero bond prices I

Theorem (Zero bonds in Hull-White model)
In the Hull-White model future zero bond prices are given by

P(t, T ) =
P(0, T )

P(0, t)
·

exp

{

−G(t, T ) [r(t) − f (0, t)] −
G(t, T )2

2

∫ t

0

[

e−a(t−u)σ(u)
]2

du

}

with

G(t, T ) =

∫ T

t

e−a(u−t)du =

[
1 − e−a(T−t)

a

]

.

▶ The proof is a bit technical.

▶ We already derived the zero bond representation

P(t, T ) = EQ
[

e−I(t,T ) | Ft

]

= e−µ(t,T )+ 1
2 σ2(t,T ).
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Now we can also derive future zero bond prices II

We have from the proof of risk-neutral drift that

f (t, T ) = G ′(t, T )r(t)+

∫ T

t

G ′(u, T )θ(u)du−

∫ T

t

G ′(u, T )G(u, T )σ2(u)du

and

P(t, T ) = e
−G(t,T )r(t)−

∫
T

t
G(u,T )θ(u)du+ 1

2

∫
T

t
G(u,T )2σ2(u)du

.

We aim at calculating the term

I(t, T ) = −

∫ T

t

G(u, T )θ(u)du +
1

2

∫ T

t

G(u, T )2σ2(u)du.
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Now we can also derive future zero bond prices III

Consider

log

(
P(0, t)

P(0, T )

)

= [G(0, T ) − G(0, t)] r(0)

+

∫ T

0

G(u, T )θ(u)du −

∫ t

0

G(u, t)θ(u)du

−
1

2

[
∫ T

0

G(u, T )2σ2(u)du −

∫ t

0

G(u, t)2σ2(u)du

]

= [G(0, T ) − G(0, t)] r(0)

+

∫ T

t

G(u, T )θ(u)du +

∫ t

0

[G(u, T ) − G(u, t)] θ(u)du

−
1

2

[
∫ T

t

G(u, T )2σ2(u)du +

∫ t

0

[
G(u, T )2 − G(u, t)2

]
σ2(u)du

]

.
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Now we can also derive future zero bond prices IV

We use G(u, T ) − G(u, t) = G(t, T )G ′(u, t) and re-arrange terms. Then

I(t, T ) = log

(
P(0, T )

P(0, t)

)

+ G(t, T )G ′(0, t)r(0)

+ G(t, T )

∫ t

0

G ′(u, t)θ(u)du

−
1

2

∫ t

0

[G(u, T ) + G(u, t)] [G(u, T ) − G(u, t)]
︸ ︷︷ ︸

[G(u,T )−G(u,t)+2G(u,t)]G(t,T )G′(u,t)

σ2(u)du.

We use representation for forward rate f (t, T ) and get

I(t, T ) = log

(
P(0, T )

P(0, t)

)

+ G(t, T )f (0, t)

−
1

2

∫ t

0

[G(u, T ) − G(u, t)] G(t, T )G ′(u, t)σ2(u)du

= log

(
P(0, T )

P(0, t)

)

+ G(t, T )f (0, t) −
G(t, T )2

2

∫ t

0

G ′(u, t)2σ2(u)du.
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Now we can also derive future zero bond prices V

Finally, we get the result

P(t, T ) = e−G(t,T )r(t)+I(t,T )

=
P(0, T )

P(0, t)
e

−G(t,T )[r(t)−f (0,t)]−
G(t,T )2

2

∫
t

0
[e−a(t−u)σ(u)]

2
du

.

▶ Future zero coupon bonds depend on:
▶ today’s yield curve f (0, t),
▶ mean reversion parameter a via G(t, T ), and
▶ short rate volatility σ(t).

▶ We see that drift θ(t) is not required for future zero coupon bonds.
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Recall short rate dynamics in separable HJM model

We consider a one-factor model (d = 1)

r(t) = f (0, t) + x(t)

dx(t) = [y(t) − χ(t) · x(t)] dt + σr (t) · dW (t)

dy(t) =
[
σr (t)2 − 2 · χ(t) · y(t)

]
· dt

with

H ′(t) = −χ(t)H(t), H(0) = 1 and g(t) = H(t)−1σr (t).

▶ How does this relate to Hull-White model with

dr(t) = [θ(t) − a · r(t)] · dt + σ(t) · dW (t)?
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Differentiate short rate in HJM model

dr(t) = f ′(0, t)dt + dx(t)

= f ′(0, t)dt + [y(t) − χ(t)x(t)] dt + σr (t)dW (t)

= [f ′(0, t) + y(t) − χ(t) (r(t) − f (0, t))] dt + σr (t)dW (t)

=




f ′(0, t) + χ(t)f (0, t) + y(t)
︸ ︷︷ ︸

θ(t)

− χ(t)
︸︷︷︸

a

r(t)




 dt + σr (t)

︸ ︷︷ ︸

σ(t)

dW (t)

HJM volatility parameters become

H ′(t) = −aH(t), H(0) = 1 ⇒ h(t) = H(t) = e−at ,

g(t) = σr (t) · H(t)−1 = σ(t)eat .
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Deterministic volatility allows calculation of auxilliary
variable y(t)

We have
y ′(t) = σ(t)2 − 2 · a · y(t), y(0) = 0.

Solving initial value problem yields

y(t) =

∫ t

0

σ(u)2 · e−2a(t−u)du.
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Hull-White model in HJM notation

In the HJM framework the Hull-White model becomes

r(t) = f (0, t) + x(t),

dx(t) =

[∫ t

0

σ(u)2 · e−2a(t−u)du − a · x(t)

]

· dt + σ(t) · dW (t),

x(0) = 0.

We will use this representation of the Hull-White model for our
implementations.
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This also gives HJM representation of Hull-White model
Corollary (Forward rate dynamics in Hull-White model)
In a Hull-White model the dynamics of the forward rate f (t, T ) become

df (t, T ) = σ(t)2e−a(T−t) 1 − e−a(T−t)

a
dt + σ(t)e−a(T−t)dW (t).

Proof.

df (t, T ) = σf (t, T ) ·

[
∫ T

t

σf (t, u)du

]

· dt + σf (t, T ) · dW (t)

= g(t)h(T )

[
∫ T

t

g(t)h(u)du

]

· dt + g(t)h(T ) · dW (t)

= σ(t)2e−a(T−t)

[
∫ T

t

e−a(u−t)du

]

︸ ︷︷ ︸

1−e−a(T−t)

a

·dt + σ(t)e−a(T−t) · dW (t).
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Zero bond prices may also be computed in terms of x(t)

Corollary (Zero bonds in Hull-White model)
In the Hull-White model future zero coupon bonds are

P(t, T ) =
P(0, T )

P(0, t)
exp

{

−G(t, T )x(t) −
G(t, T )2

2

∫ t

0

[

e−a(t−u)σ(u)
]2

du

}

with

G(t, T ) =

∫ T

t

e−a(u−t)du =

[
1 − e−a(T−t)

a

]

.

Proof.
Result follows either from Hull-White model zero bond formula with
x(t) = r(t) − f (0, T ) or from zero bond formula for the separable HJM
model with Hull-White results for G(t, T ) and y(t).
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First we need the distribution of the state variable x(t)

We have
dx(t) = [y(t) − a · x(t)] · dt + σ(t) · dW (t).

This yields for t ≥ s

x(t) = e−a(t−s)

[

x(s) +

∫ t

s

ea(u−s) (y(u)du + σ(u)dW (u))

]

.

Lemma (State variable distribution)
In the HJM version of the Hull-White model we have that under the
risk-neutral measure the state variable x(t) is normally distributed with

EQ [x(t) | Fs ] = e−a(t−s)

[

x(s) +

∫ t

s

ea(u−s)y(u)du

]

and

Var [x(t) | Fs ] =

∫ t

s

[

e−a(t−u)σ(u)
]2

du.
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Result follows directly from state variable representation
for x(t)

Proof.
Result for E [x(t) | Fs ] follows from martingale property of Ito integral.
Variance follows from Ito isometry

Var [x(t) | Fs ] = e−2a(t−s)

∫ t

s

[

ea(u−s)σ(u)
]2

du

=

∫ t

s

[

e−a(t−u)σ(u)
]2

du.

▶ We will have a closer look at
EQ [x(t) | Fs ] = e−a(t−s)

[

x(s) +
∫ t

s
ea(u−s)y(u)du

]

later on.

▶ Note, that we can also write

Var [x(t) | Fs ] = y(t) − G ′(s, t)2y(s).

Auxilliary variable y(t) represents the (co-)variance process of x(t).
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Zero coupon bond options are important building blocks

-

?

6

t

TE

TM

K

1

Definition (Zero coupon bond (ZCB) option)
A zero coupon bond option is defined as an option with expiry time TE ,
ZCB maturity time TM with TM ≥ TE , strike K , call/put flag
ϕ ∈ {1, −1} and payoff

V ZBO(TE ) = [ϕ (P(TE , TM) − K )]
+

.

▶ We are interested in present value V ZBO(t).

▶ We use TE -forward measure for valuation

V ZBO(t) = P(t, TE ) · ETE

[

[ϕ (P(TE , TM) − K )]
+

| Ft

]

.
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P(TE , TM) is log-normally distributed with known
parameters

▶ We have for the forward bond price

ETE [P(TE , TM) | Ft ] = P(t, TM)/P(t, TE ).

▶ From

P(TE , TM) =
P(t, TM)

P(t, TE )
e

−G(TE ,TM )x(TE )−
G(TE ,TM )2

2

∫
TE

t
[e−a(TE −u)σ(u)]

2
du

we get
▶ P(TE , TM) is log-normally distributed with log-normal variance

ν
2 = Var [G(TE , TM)x(TE ) | Ft ] = G(TE , TM)2

∫ TE

t

[
e

−a(TE −u)
σ(u)

]2
du,

▶ we can apply Black’s formula for option pricing.
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ZCO prices are given by Black’s formula

Theorem (ZCO pricing formula)
The time-t price of a zero coupon bond option with expiry time TE , ZCB
maturity time TM with TM ≥ TE , strike K , call/put flag ϕ ∈ {1, −1}
and payoff

V ZBO(TE ) = [ϕ (P(TE , TM) − K )]
+

is given by

V ZBO(t) = P(t, TE ) · Black (P(t, TM)/P(t, TE ), K , ν, ϕ)

with log-normal bond price variance

ν2 = G(TE , TM)2

∫ TE

t

[

e−a(TE −u)σ(u)
]2

du.

Proof.
Result follows from log-normal distribution property.
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Coupon bond options are further building blocks

-

?

6 6 6 6

6

t

TE

T1 Tn

K

C1

Cn

Payoff at option expiry TE

V (TE ) =

[(
n∑

i=1

Ci · P(TE , Ti)

)

− K

]+

.
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Coupon bond options are options on a basket of future
cash flows

Definition (Coupon bond option (CBO))
A coupon bond option is defined as an option with expiry time TE , future
cash flow payment times T1, . . . , Tn (with Ti > TE ), corresponding cash
flow values C1, . . . , Cn, a fixed strike price K , call/put flag ϕ ∈ {1, −1}
and payoff

V CBO(TE ) =





(

ϕ

[(
n∑

i=1

CiP(TE , Ti)

)

− K

])+


 .

▶ We cannot price CBO directly due to the basket structure.

▶ However, with some (not too strong) assumptions we can represent
the ’option on a basket’ as a ’basket of options’.

▶ We use monotonicity of bond prices (for t < T )

∂

∂x
P(x(t); t, T ) = −G(t, T ) · P(x(t); t, T ) < 0.
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CBO’s are transformed via Jamshidian’s trick I

W.l.o.g. set ϕ = 1 (method works for ϕ = −1 as well).
Assume underlying bond is monotone in state variable x(TE ), i.e.

∂

∂x

n∑

i=1

CiP(x(TE ); TE , Ti) =

n∑

i=1

Ci

∂

∂x
P(x(TE ); TE , Ti)

= −
n∑

i=1

CiG(TE , Ti)P(x(TE ); TE , Ti) < 0.

▶ Condition is satisfied, e.g. if Ci ≥ 0.

▶ Small negative cash flows typically don’t violate the assumption
since last cash flow Cn is typically a large positive cash flow.
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CBO’s are transformed via Jamshidian’s trick II

Then find x⋆ such that
(

n∑

i=1

CiP(x⋆; TE , Ti)

)

− K = 0

and set Ki = P(x⋆; TE , Ti).
We get (using monotonicity assumption)

[(
n∑

i=1

CiP(TE , Ti)

)

− K

]+

= 1{x(TE )≤x⋆}

[(
n∑

i=1

CiP(TE , Ti)

)

− K

]

= 1{x(TE )≤x⋆}

[
n∑

i=1

CiP(TE , Ti) −

n∑

i=1

CiKi

]

=

[
n∑

i=1

Ci [P(TE , Ti) − Ki ]1{x(TE )≤x⋆}

]

=

[
n∑

i=1

Ci [P(TE , Ti) − Ki ]
+

]

.
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CBO’s are transformed via Jamshidian’s trick III

This gives

ETE





[(
n∑

i=1

CiP(TE , Ti)

)

− K

]+


 =
n∑

i=1

Ci E
TE

[

[P(TE , Ti) − Ki ]
+
]

︸ ︷︷ ︸

Black’s formula

or

V CBO(t) =
n∑

i=1

Ci · V ZBO
i (t)

=
n∑

i=1

Ci · P(t, TE ) · Black (P(t, Ti)/P(t, TE ), Ki , νi , ϕ) ,

ν2
i = G(TE , Ti)

2

∫ TE

t

[

e−a(TE −u)σ(u)
]2

du.
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CBO’s are prices as sum of ZBO’s

Theorem (CBO pricing formula)
Consider a CBO with expiry time TE , future cash flow payment times
T1, . . . , Tn (with Ti > TE ), corresponding cash flow values C1, . . . , Cn,
fixed strike price K and call/put flag ϕ ∈ {1, −1}. Assume that the
underlying bond price

∑n
i=1 CiP(x(TE ); TE , Ti) is monotonically

decreasing in the state variable x(TE ). Then the time-t price of the CBO
is

V CBO(t) =

n∑

i=1

Ci · V ZBO
i (t)

where V ZBO
i (t) is the time-t price of a corresponding ZBO with strike

Ki = P(x⋆; TE , Ti) where the break-even state x⋆ is given by

(
n∑

i=1

CiP(x⋆; TE , Ti)

)

− K = 0.

Proof.
Follows from derivation above.
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We have another look at the expectation(s) of x(t)

▶ For general option pricing we also need expectation ET [x(T ) | Ft ].

▶ Then we can price

V (t) = P(t, T )·ET [V (x(T ); T ) | Ft ] = P(t, T )·

∫ +∞

−∞

V (x ; T )·pµ,σ2(x)·dx .

▶ Here pµ,σ2(x) is the density of a normal distribution N
(
µ, σ2

)
with

µ = ET [x(T ) | Ft ] and σ2 = Var [x(T ) | Ft ] .

▶ Integral
∫ +∞

−∞
V (x ; T ) · pµ,σ2(x) · dx is typically evaluated

numerically (i.e. quadrature).

▶ We first calculate EQ [x(T ) | Ft ] and then derive ET [x(T ) | Ft ].
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We calculate expectation in risk-neutral measure I
Recall

dx(t) = [y(t) − a · x(t)] · dt + σ(t) · dW (t).

This yields for T ≥ t

x(T ) = e−a(T−t)

[

x(t) +

∫ T

t

ea(u−t) (y(u)du + σ(u)dW (u))

]

and

EQ [x(T ) | Ft ] = e−a(T−t)x(t) +

∫ T

t

e−a(T−u)y(u)du.

We get

∫ T

t

e−a(T−u)y(u)du =

∫ T

t

e−a(T−u)

(∫ u

0

σ(s)2e−2a(u−s)ds

)

du

=

∫ T

t

e−a(T−u)

(∫ t

0

σ(s)2e−2a(u−s)ds

)

du

+

∫ T

t

e−a(T−u)

(∫ u

t

σ(s)2e−2a(u−s)ds

)

du.
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We calculate expectation in risk-neutral measure II

We analyse the integrals individually,

I1(t, T ) =

∫ T

t

e−a(T−u)

(∫ t

0

σ(s)2e−2a(u−s)ds

)

du

=

∫ T

t

(∫ t

0

e−a(T−u)σ(s)2e−2a(u−s)ds

)

du

=

∫ t

0

(
∫ T

t

e−a(T−u)σ(s)2e−2a(u−s)du

)

ds

=

∫ t

0

σ(s)2

(
∫ T

t

e−a(T−u)e−2a(u−s)du

)

ds

=

∫ t

0

σ(s)2

[
e−a(T−u)e−2a(u−s)

−a

]T

u=t

ds

=

∫ t

0

σ(s)2

a

[

e−a(T−t)e−2a(t−s) − e−a(T−T )e−2a(T−s)
]

ds.
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We calculate expectation in risk-neutral measure III

Exponential terms can be further simplified as

e−a(T−t)e−2a(t−s) − e−2a(T−s) = e−a(T−t)
[

1 − e−a(T−t)
]

e−2a(t−s).

This gives

I1(t, T ) = e−a(T−t) 1 − e−a(T−t)

a

∫ t

0

σ(s)2e−2a(t−s)ds.
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We calculate expectation in risk-neutral measure IV

For the second integral we get

I2(t, T ) =

∫ T

t

e−a(T−u)

(∫ u

t

σ(s)2e−2a(u−s)ds

)

du

=

∫ T

t

(∫ u

t

e−a(T−u)σ(s)2e−2a(u−s)ds

)

du

=

∫ T

t

(
∫ T

s

e−a(T−u)σ(s)2e−2a(u−s)du

)

ds

=

∫ T

t

σ(s)2

(
∫ T

s

e−a(T−u)e−2a(u−s)du

)

ds

=

∫ T

t

σ(s)2

[
e−a(T−u)e−2a(u−s)

−a

]T

u=s

ds

=

∫ T

t

σ(s)2

a

[

e−a(T−s)e−2a(s−s) − e−a(T−T )e−2a(T−s)
]

ds.
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We calculate expectation in risk-neutral measure V

Again we simplify exponential terms

e−a(T−s) − e−2a(T−s) = e−a(T−s)
[

1 − e−a(T−s)
]

.

This gives

I2(t, T ) =

∫ T

t

σ(s)2e−a(T−s) 1 − e−a(T−s)

a
ds.

In summary, we get

EQ [x(T ) | Ft ] = e−a(T−t)x(t) + I1(t, T ) + I2(t, T )

= e−a(T−t)

[

x(t) +
1 − e−a(T−t)

a

∫ t

0

σ(s)2e−2a(t−s)ds

]

+

∫ T

t

σ(s)2e−a(T−s) 1 − e−a(T−s)

a
ds.
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We calculate expectation in terminal measure I

Recall change of measure

dW T (t) = dW (t) + σP(t, T )dt.

We have

σP(t, T ) = σ(t)G(t, T ) = σ(t) ·
1 − e−a(T−t)

a
.

This gives

dx(t) =
[
y(t) − σ(t)2G(t, T ) − a · x(t)

]
· dt + σ(t) · dW T (t)

and

x(T ) = e−a(T−t)·
[

x(t) +

∫ T

t

ea(u−t)
([

y(u) − σ(u)2G(u, T )
]

du + σ(u)dW T (u)
)

]

.
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We calculate expectation in terminal measure II

We find that

ET [x(T ) | Ft ] = EQ [x(T ) | Ft ] −

∫ T

t

σ(u)2e−a(T−u)G(u, T )du.

It turns out that

∫ T

t

σ(u)2e−a(T−u)G(u, T )du =

∫ T

t

σ(u)2e−a(T−u) 1 − e−a(T−u)

a
du

= I2(t, T ).

As a result, we get

ET [x(T ) | Ft ] = e−a(T−t)

[

x(t) +
1 − e−a(T−t)

a

∫ t

0

σ(s)2e−2a(t−s)ds

]

or more formally

ET [x(T ) | Ft ] = G ′(t, T ) [x(t) + G(t, T )y(t)] .
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All the formulas serve the purpose of model calibration and
derivative pricing

Model Calibration Derivative Pricing

zero bond option (ZBO)

coupon bond option (CBO)

European swaption

future zero bonds P(x(t); t, T )

expectation ET [x(T ) | Ft ] and
variance Var [x(T ) | Ft ]

payoff pricing
V (t) = P(t, T ) · ET [V (x(T ); T ) | Ft ]
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Bond option pricing is realised via ZBO’s and CBO’s
Zero Bond Option (ZBO)
Zero bond with expiry TE , maturity TM , strike K and call/put flag ϕ

V ZBO(0) = P(0, TE ) · Black (P(0, TM)/P(0, TE ), K , ν, ϕ) ,

ν2 = G(TE , TM)2y(TE ).

Coupon Bond Option (CBO)
Coupon bond option with strike K and underlying bond
∑n

i=1 Ci · P(TE , Ti),

V CBO(t) =

n∑

i=1

Ci · V ZBO
i (t)

where ZBO’s V ZBO
i (t) with expiry TE , maturity Ti , and strike

Ki = P(x⋆, TE , Ti) and x⋆ s.t.

n∑

i=1

Ci · P(x⋆; TE , Ti) = K .
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General derivative pricing requires state variable
expectation and variance

Zero Bonds (as building blocks for payoffs V (x(T ); T ))

P(x(T ); T , S) =
P(0, S)

P(0, T )
exp

{

−G(T , S)x(T ) −
G(T , S)2

2
y(T )

}

.

General Derivative Pricing

V (t) = P(t, T )·ET [V (x(T ); T ) | Ft ] = P(t, T )·

∫ +∞

−∞

V (x ; T )·pµ,σ2(x)·dx

with pµ,σ2(x) density of a Normal distribution N
(
µ, σ2

)
with

µ = ET [x(T ) | Ft ] = G ′(t, T ) [x(t) + G(t, T )y(t)]

and
σ2 = Var [x(T ) | Ft ] = y(T ) − G ′(t, T )2y(t).
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Fortunately, we only need a small set of model functions
for implementation

▶ Discount factors P(0, T ) from input yield curve.

▶ Function G(t, T ) with

G(t, T ) =
1 − e−a(T−t)

a
.

▶ Function G ′(t, T ) with

G ′(t, T ) = e−a(T−t).

▶ Auxilliary variable y(t) with

y(t) =

∫ t

0

[

e−a(t−u)σ(u)
]2

du =
k∑

j=1

e−2a(t−tj ) − e−2a(t−tj−1)

2a
σ2

j

where we assume σ(t) piece-wise constant on a grid
0 = t0, t1, . . . , tk = t.
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It remains to show how Hull-Wite model is applied to
European swaptions

Model Calibration Derivative Pricing

zero bond option (ZBO)

coupon bond option (CBO)

European swaption

future zero bonds P(x(t); t, T )

expectation ET [x(T ) | Ft ] and
variance Var [x(T ) | Ft ]

payoff pricing
V (t) = P(t, T ) · ET [V (x(T ); T ) | Ft ]
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Recall that Swaption is option to enter into a swap at a
future time

-

? ? ? ?

6 6

TE

T0

T̃0

Tn

T̃m

K

Lm

▶ At option exercise time TE present value of swap is

V Swap(TE ) = K

n∑

i=1

τiP(TE , Ti)

︸ ︷︷ ︸

future fixed leg

−

m∑

j=1

Lδ(TE , T̃j−1, T̃j−1 + δ)τ̃jP(TE , T̃j)

︸ ︷︷ ︸

future float leg

.

▶ Option to enter represents the right but not the obligation to enter
swap.

▶ Rational market participant will exercise if swap present value is
positive, i.e.

V Swpt(TE ) = max
{

V Swap(TE ), 0
}

.
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How do we get the swaption payoff compatible to our
Hull-White model formulas?

V Swap(TE ) = K

n∑

i=1

τiP(TE , Ti)

︸ ︷︷ ︸

future fixed Leg

−

m∑

j=1

Lδ(TE , T̃j−1, T̃j−1 + δ)τ̃jP(TE , T̃j)

︸ ︷︷ ︸

future float leg

▶ Fixed leg can be expressed in terms of future state variable x(TE )
via P(x(TE ); TE , Ti)

▶ Float leg contains future forward Libor rates Lδ(TE , T̃j−1, T̃j−1 + δ)
from (future) projection curve

▶ However, Hull-White model only provides representation of discount
factors, i.e. P(TE , T̃j)

We need to model the relation between future Libor rates
Lδ(TE , T̃j−1, T̃j−1 + δ) and discount factors P(TE , T̃j).
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We do have all ingredients from our deterministic
multi-curve model

Recall the definition of (future) forward Libor rate

Lδ(TE , T̃j−1, T̃j−1 + δ) = ET̃j−1+δ
[
Lδ(T̃j−1, T̃j−1, T̃j−1 + δ) | FTE

]

=

[
P(TE , T̃j−1)

P(TE , T̃j−1 + δ)
· D(T̃j−1, T̃j−1 + δ) − 1

]
1

τj−1

(τj−1 = τ(T̃j−1, T̃j−1 + δ)) with tenor basis factor

D(T̃j−1, T̃j−1 + δ) =
Q(TE , T̃j−1)

Q(TE , T̃j−1 + δ)

and discount factors Q(TE , T ) arising from credit (or funding) risk
embedded in Libor rates Lδ(·).
▶ Key assumption is that D(T̃j−1, T̃j−1 + δ) is deterministic or

independent of TE .
▶ Then

D(T̃j−1, T̃j−1+δ) =
Q(0, T̃j−1)

Q(0, T̃j−1 + δ)
=

Pδ(0, T̃j−1)

Pδ(0, T̃j−1 + δ)
·
P(0, T̃j−1 + δ)

P(0, T̃j−1)
.



p. 317

We use basis spread model to simplify Libor coupons

▶ Tenor basis factor

Dj−1 = D(T̃j−1, T̃j−1 + δ) =
Pδ(0, T̃j−1)

Pδ(0, T̃j−1 + δ)
·

P(0, T̃j−1 + δ)

P(0, T̃j−1)

is calculated from today’s projection curve Pδ(0, T ) and discount
curve P(0, T ).

▶ Further assume natural Libor payment dates and consistent year
fractions

T̃j = T̃j−1 + δ, τ(T̃j−1, T̃j−1 + δ) = τ̃j .

▶ Libor coupon becomes

Lδ(TE , T̃j−1, T̃j)τ̃jP(TE , T̃j) =

[
P(TE , T̃j−1)

P(TE , T̃j)
Dj−1 − 1

]
1

τ̃j

τ̃jP(TE , T̃j)

= P(TE , T̃j−1)Dj−1 − P(TE , T̃j).
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We can write the float leg (1/2)

V Swap(TE ) = K

n∑

i=1

τiP(TE , Ti)

︸ ︷︷ ︸

future fixed leg

−

m∑

j=1

Lδ(TE , T̃j−1, T̃j−1 + δ)τ̃jP(TE , T̃j)

︸ ︷︷ ︸

future float leg

= K

n∑

i=l

τiP(TE , Ti) −

m∑

j=1

P(TE , T̃j−1)Dj−1 − P(TE , T̃j)

= K

n∑

i=1

τiP(TE , Ti)

−

[

P(TE , T̃0)D0 − P(TE , T̃m) +

m∑

j=2

P(TE , T̃j−1) [Dj−1 − 1]

]

= K
n∑

i=1

τiP(TE , Ti)

−

[

P(TE , T̃0) − P(TE , T̃m) +

m∑

j=1

P(TE , T̃j−1) [Dj−1 − 1]

]

.
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We can re-write the float leg (2/2)

Reordering terms yields

V Swap(TE ) = − P(TE , T̃0)
︸ ︷︷ ︸

strike paid at T0

+

n∑

i=1

K · τi · P(TE , Ti)

︸ ︷︷ ︸

fixed rate coupons

−
m∑

j=1

P(TE , T̃j−1) · [Dj−1 − 1]

︸ ︷︷ ︸

negative spread coupons

+ P(TE , T̃m)
︸ ︷︷ ︸

notional payment

=

n+m+1∑

k=0

Ck · P(TE , T̄k)

with

C0 = −1, Ci = K ·τi (i = 1, . . . , n), Cn+j = − [Dj−1 − 1] , (j = 1, . . . , m),

and Cn+m+1 = 1,

and corresponding payment times T̄k .



p. 320

Swaptions are equivalent to coupon bond options
Corollary (Equivalence between Swaption and bond option)
Consider a European Swaption with receiver/payer flag ϕ ∈ {1, −1}
payoff

V Swpt(TE ) =

[

ϕ

{

K

n∑

i=1

τiP(TE , Ti) −

m∑

j=1

Lδ(TE , T̃j−1, T̃j−1 + δ)τ̃jP(TE , T̃j)

}]

Under our deterministic basis spread assumption the swaption payoff is
equal to a call/put bond option payoff

V CBO(TE ) =

[

ϕ

{
n+m+1∑

k=0

Ck · P(TE , T̄k)

}]+

with zero strike and cash flows Ck and times T̄k as elaborated above.
Moreover, if the underlying bond payoff is monotonic then

V Swpt(t) = V CBO(t) =

n+m+1∑

k=0

Ck · V ZBO
k (t)

with corresponding zero bond option parameters.
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We give some comments regarding the CBO mapping

▶ Note that C0 = −1 is a large negative cash flow.

▶ However, ∂
∂x

[
−P(TE , T̃0)

]
≈ −G(TE , T0) is small because TE − T0

is small.

▶ If TE = T̃0, i.e. no spot offset between option expiry and swap start
time, then
▶ set CBO strike K = D(T̃0, T̃1),

▶ remove first negative spread coupon Cn+1 from cash flow list.

▶ In practice monotonicity assumption

∂

∂x

[
n+m+1∑

k=0

Ck · P(TE , T̄k)

]

< 0

is typically no issue.

In Hull-White model calibration we will use CBO formula to match
Hull-White model prices versus Vanilla model swaption prices.
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How do the simulated paths look like?

▶ Model short rate volatility σ calibrated to 100bp flat volatility at 5y
and 10y , mean reversion a ∈ {−5%, 0%, 5%} 6

▶ Higher mean reversion yields more forward volatility.

6Zero mean reversion is effectively approximated via a = 1bp. This does not
change the overall behavior and avoids special treatment in formulas.
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Forward volatility dependence on mean reversion can also
be derived analytically

Denote forward volatility as

σFwd(T0, T1) =

√

Var [x(T1) | FT0
]

T1 − T0
=

√

y(T1) − G ′(T0, T1)2y(T0)

T1 − T0

▶ Suppose spot volatilities σFwd(0, T1) and σFwd(0, T0) (and thus
y(T0) and y(T1) are fixed)

▶ If mean reversion a increases then G ′(T0, T1) = e−a(T1−T0) decreases
▶ Thus forward volatility σFwd(T0, T1) increases
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Which kind of curves can we simulate with Hull-White
model?

▶ Models use flat short rate volatility σ = 100bp and mean reversion
a ∈ {−5%, 0%, 5%} 7

▶ Model works with negative mean reversion - however, yield curves
are exploding

7Zero mean reversion is effectively approximated via a = 1bp. This does not
change the overall behavior and avoids special treatment in formulas.
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What are relevant properties of a model for option pricing?

▶ Vanilla models require input (ATM volatility) parameters for
expiry-tenor-pairs.
▶ Which shape of ATM volatilities for expiry-tenor-pairs are predicted

by Hull-White model?

▶ SABR model allows modelling of volatility smile.
▶ Which shapes of volatility smile can be modelled with Hull-White

model?
▶ How does the smile change if we change the model parameters?

▶ We aim at applying the Hull-White model to price Bermudan
swaptions.
▶ How do the model parameters impact prices of exotic derivatives?

For now we focus on model-implied volatilities (ATM and smile). The
impact of model parameters on Bermudans is analysed later.
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Model properties for option pricing are assessed by
analysing model-implied volatilities

Model-implied normal volatility
Consider a swaption with expiry/start/end-dates TE /T0/Tn and strike
rate K . For a given Hull-White model the model-implied normal volatility
is calculated as

σ(T0, Tn, K ) = Bachelier−1
(
S(t), K , V CBO(t)/An(t), ϕ

)
/
√

TE − t.

Here, S(t) and An(t) are the forward swap rate and annuity of the
underlying swap with start/end-date T0/Tn. V CBO(t) is the Hull-White
model price of a coupon bond option equivalent to the input swaption.
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Which shapes of volatility smile can be modelled and how
does the smile change if we change the model parameters?

▶ Models use flat short rate volatility σ ∈ {50bp, 75bp, 100bp, 125bp}
and mean reversion a ∈ {−5%, 0%, 5%}:

▶ We can only model flat smile - this is a major model limitation!

▶ Model-implied volatility decreases if mean reversion increases.
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Which shape of ATM volatilities for expiry-tenor-pairs are
predicted by Hull-White model?

▶ Models use flat short rate volatility σ - calibrated to 10y-10y
swaption with 100bp volatility

▶ Mean reversion a ∈ {−5%, 0%, 5%}:

▶ Mean reversion impacts slope of ATM volatilities in expiry and swap
term dimension.
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Recall overnight index swap (OIS) coupon rate calculation

compounding leg

fixed leg

-

?K

6

?K

6

?K

6

. . .

C1 . . . Cm

T0 T1

accrual dates T0, T1

compounding leg coupon with compounding rate C1

observation dates t0, . . . , tk

-
t0 = T0 t1 t2 . . . tk−1 tk = T1

6 6 6 6 6 6 6 6 6 6 6

overnight rates Li = L(ti−1; ti−1, ti )

6

R R R R R R R R R R
�-

τi = 1d

C1 =

[∏
k

i=1
(1+Li τi )

]
−1

τ(T0,T1)
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The backward-looking compounded rate is composed of
individual overnight rates

▶ Assume overnight index rate Li = L(ti−1; ti−1, ti) is a credit-risk free
simple compounded rate.

▶ Compounded rate C1 (for a period [T0, T1]) is payed at T1 and
specified as

C1 =

{[
k∏

i=1

(1 + Liτi)

]

− 1

}

1

τ(T0, T1)
.

▶ Crucial part from modeling perspective is compounding factor

k∏

i=1

(1 + Liτi) =

k∏

i=1

1

P(ti−1, ti)
.

▶ Tower-law yields

ET1

[
k∏

i=1

1

P(ti−1, ti)
| FT0

]

=
1

P(T0, T1)
.
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For pricing options on compounded rates we need the
terminal distribution of the compounding factor

Use Hull-White model representation of zero bonds

P(ti−1, ti) =
P(t, ti)

P(t, ti−1)
exp

{

−G(ti−1, ti)x(ti−1) −
1

2
G(ti−1, ti)

2y(ti−1)

}

,

G(ti−1, ti) =
1 − exp {−a(ti − ti−1)}

a
,

y(ti−1) =

∫ ti−1

t

σ(u)2 · e−2a(ti−1−u)du.

Compounding factor becomes

k∏

i=1

1

P(ti−1, ti)
=

P(t, T0)

P(t, T1)
exp

{
k∑

i=1

G(ti−1, ti)x(ti−1) +
1

2
G(ti−1, ti)

2y(ti−1)

}

.

Variance of compounding factor is driven by stochastic term
∑k

i=1 G(ti−1, ti)x(ti−1).
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We write all x(ti−1) in terms of x(T0) plus individual Ito
integrals

We have in Hull-White model and risk-neutral measure

x(ti−1) = e−a(ti−1−T0)

[

x(T0) +

∫ ti−1

T0

ea(u−T0) [y(u)du + σ(u)dW (u)]

]

.

Abbreviate dp(u) = y(u)du + σ(u)dW (u) (to simplify notation). Then

k∑

i=1

G(ti−1, ti)x(ti−1)

=

k∑

i=1

G(ti−1, ti)

{

e−a(ti−1−T0)

[

x(T0) +

∫ ti−1

T0

ea(u−T0)dp(u)

]}

= x(T0)

k∑

i=1

G(ti−1, ti)e
−a(ti−1−T0)

+
k∑

i=1

G(ti−1, ti)

∫ ti−1

T0

e−a(ti−1−u)dp(u).

We analyse above two parts individually.
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First we calculate the scaling factor for x(T0)

We have

G(ti−1, ti)e
−a(ti−1−T0) =

1 − e−a(ti −ti−1)

a
e−a(ti−1−T0) = G(T0, ti)−G(T0, ti−1).

This yields the telescopic sum

k∑

i=1

G(ti−1, ti)e
−a(ti−1−T0) =

k∑

i=1

G(T0, ti) − G(T0, ti−1) = G(T0, T1).

And we have

x(T0)

k∑

i=1

G(ti−1, ti)e
−a(ti−1−T0) = G(T0, T1)x(T0).
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Second we calculate the sum of Ito integrals (1/2)
We split integration and re-order sums

k∑

i=1

G(ti−1, ti)

∫ ti−1

T0

e−a(ti−1−u)dp(u)

=

k∑

i=1

G(ti−1, ti)

i−1∑

j=1

∫ tj

tj−1

e−a(ti−1−u)dp(u)

=

k∑

i=1

i−1∑

j=1

∫ tj

tj−1

G(ti−1, ti)e
−a(ti−1−u)dp(u)

=

k∑

i=1

i−1∑

j=1

∫ tj

tj−1

[G(u, ti) − G(u, ti−1)] dp(u)

=

k−1∑

j=1

n∑

i=j+1

∫ tj

tj−1

[G(u, ti) − G(u, ti−1)] dp(u)

=

k−1∑

j=1

∫ tj

tj−1

n∑

i=j+1

[G(u, ti) − G(u, ti−1)] dp(u).
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Second we calculate the sum of Ito integrals (2/2)

Now we can use telescopic sum property again and simplify

k∑

i=1

G(ti−1, ti)

∫ ti−1

T0

e−a(ti−1−u)dp(u)

=

k−1∑

j=1

∫ tj

tj−1

n∑

i=j+1

[G(u, ti) − G(u, ti−1)] dp(u)

=

k−1∑

j=1

∫ tj

tj−1

[G(u, tn) − G(u, tj)] dp(u)

=

k−1∑

j=1

G(tj , tn)

∫ tj

tj−1

e−a(tj −u)dp(u).
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Putting things together yields the desired representation of
the compounding factor (1/3)

k∏

i=1

1

P(ti−1, ti)
=

P(t, T0)

P(t, T1)
exp

{
k∑

i=1

G(ti−1, ti)x(ti−1) +
1

2
G(ti−1, ti)

2y(ti−1)

}

with

k∑

i=1

G(ti−1, ti)x(ti−1) = G(T0, T1)x(T0)+

k−1∑

j=1

G(tj , tn)

∫ tj

tj−1

e−a(tj −u)dp(u).
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Putting things together yields the desired representation of
the compounding factor (2/3)

Substituting back dp(u) = y(u)du + σ(u)dW (u) gives

k∑

i=1

G(ti−1, ti)x(ti−1) = G(T0, T1)x(T0)
︸ ︷︷ ︸

I0

+
k−1∑

j=1

G(tj , tn)

∫ tj

tj−1

e−a(tj −u)σ(u)dW (u)

︸ ︷︷ ︸

Ij

+
k−1∑

j=1

G(tj , tn)

∫ tj

tj−1

e−a(tj −u)y(u)du.
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Putting things together yields the desired representation of
the compounding factor (3/3)

k∏

i=1

1

P(ti−1, ti)
=

P(t, T0)

P(t, T1)
exp

{
k∑

i=1

G(ti−1, ti)x(ti−1) +
1

2
G(ti−1, ti)

2y(ti−1)

}

with
k∑

i=1

G(ti−1, ti)x(ti−1) = G(T0, T1)x(T0)
︸ ︷︷ ︸

I0

+
k−1∑

j=1

G(tj , tn)

∫ tj

tj−1

e−a(tj −u)σ(u)dW (u)

︸ ︷︷ ︸

Ij

+

k−1∑

j=1

G(tj , tn)

∫ tj

tj−1

e−a(tj −u)y(u)du.

Stochastic Terms I0 and Ij are independent Ito integrals. Thus
∏k

i=1
1

P(ti−1,ti )
is log-normal with known variance.
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Log-normal variance is given by sum of variances for Ito
integrals I0 and Ij

We first calculate the variance

ν2 = Var

[

log

(
k∏

i=1

1

P(ti−1, ti)

)

| Ft

]

= Var

[

I0 +

k−1∑

j=1

Ij | Ft

]

= G(T0, T1)2Var [x(T0) | Ft ]

+
k−1∑

j=1

1{t≤tj−1}G(tj , tn)2

∫ tj

tj−1

[

e−a(tj −u)σ(u)
]2

du.
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Expectation is given from martingale property

Recall that expectation is also known already as

µ = ET1

[
k∏

i=1

1

P(ti−1, ti)
| Ft

]

=
P(t, T0)

P(t, T1)

=

k∏

i=1

P(t, ti−1)

P(t, ti)

=

k∏

i=1

(
1 + Eti [Li | Ft ] τi

)

for t ≤ T0.

▶ Derivation can also be applied for partly fixed compounding periods
withT0 < t ≤ T1.
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We summarise results for compounding factor terminal
distribution

Lemma (OIS compounding factor distribution)
The compounding factor

∏k
i=1 (1 + Liτi) =

∏k
i=1

1
P(ti−1,ti )

of an OIS

coupon in Hull-White model is log-normally distributed with expectation
(in T1-forward measure)

µ = ET1

[
k∏

i=1

(1 + Liτi) | Ft

]

=

k∏

i=1

(
1 + Eti [Li | Ft ] τi

)

and log-normal variance

ν2 = G(T0, T1)2Var [x(T0) | Ft ]

+
k−1∑

j=1

1{t≤tj−1}G(tj , tn)2

∫ tj

tj−1

[

e−a(tj −u)σ(u)
]2

du.

Note:
▶ If t ≥ T0 then Var [x(T0) | Ft ] = 0.

▶ if t < T0 then Var [x(T0) | Ft ] =
∫ T0

t

[
e−a(T0−u)σ(u)

]2
du.
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Caplets and floorlets on OIS coupons can be calculated via
Black formula

Theorem (OIS caplet and floorlet pricing)
A caplet or floorlet written on a compounded coupon rate

C1 =
{[
∏k

i=1 (1 + Liτi)
]

− 1
}

1
τ(T0,T1) with coupon period [T0, T1],

observation times T0 = t0, . . . , tk = T1 and strike rate K pays at T1 the
payoff

V (T1) = τ(T0, T1) [ϕ (C1 − K )]
+

.

In a Hull White model the option price at t < T1 is

V (t) = P(t, T1) · Black (µ, 1 + τ(T0, T1)K , ν, ϕ)

with µ =
∏k

i=1 (1 + Eti [Li | Ft ] τi) and

ν2 = G(T0, T1)2Var [x(T0) | Ft ]

+

k−1∑

j=1

1{t≤tj−1}G(tj , tn)2

∫ tj

tj−1

[

e−a(tj −u)σ(u)
]2

du.
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Caplet and floorlet pricing formula follows directly from
earlier derivations

Proof.
We abbreviate τ = τ(T0, T1) and re-write the payoff as

V (T1) = [ϕ (τC1 − τK )]
+

=

[

ϕ

([
k∏

i=1

(1 + Liτi)

]

− (1 + τK )

)]+

.

Consequently, we can view it as an option on the compounding factor
∏k

i=1 (1 + Liτi) with strike 1 + τ(T0, T1)K . Using T1-forward measure
yields the present value

V (t) = P(t, T1) · ET1







[

ϕ

([
k∏

i=1

(1 + Liτi)

]

− (1 + τK )

)]+

| Ft






.

We established earlier that the compounding factor
∏k

i=1 (1 + Liτi) is
log-normally distributed with expectation µ and log-normal variance ν2

as stated in the theorem. Thus we can apply Black’s formula for call and
put option pricing.
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In practice, the discrete compounding factor
∏k

i=1 (1 + Liτi)
may be approximated to simplify valuation formulas

Typically, the compounding period ti−1 to ti for an overnight rate Li is
small: one day (or two/three days for holidays/weekends).
We use the short rate r(t), martingale property of bank account in
ti -forward measure and approximate

1 + Liτi =
1

P(ti−1, ti)
= Eti

[

exp

{
∫ ti

ti−1

r(u)du

}

| Fti−1

]

≈ exp

{
∫ ti

ti−1

r(u)du

}

.

This yields continuous compounding factor approximation

k∏

i=1

(1 + Liτi) ≈
k∏

i=1

e

∫
ti

ti−1
r(u)du

= e

∑
k

i=1

∫
ti

ti−1
r(u)du

= exp

{
∫ T1

T0

r(u)du

}

.
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Approximate option payoff is formulated using continuous
compounding factor

(Approximate) OIS caplet payoff is

[

exp

{
∫ T1

T0

r(u)du

}

− [1 + τ(T0, T1)K ]

]+

.

As before we have for t ≤ T0

µ = ET1

[

exp

{
∫ T1

T0

r(u)du

}

| Ft

]

= ET1

[

ET1

[

exp

{
∫ T1

T0

r(u)du

}

| FT0

]

| Ft

]

= ET1

[
1

P(T0, T1)
| Ft

]

=
P(t, T0)

P(t, T1)
.

What is the distribution of continuous compounding factor

exp
{∫ T1

T0
r(u)du

}

?
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We already know I(T0, T1) =
∫T1
T0

r(u)du from drift
calculation for classical Hull White model

From the proof of Lemma lem:HW-Drift-Calibration(p. 268) we have

I(T0, T1) =

∫ T1

T0

r(u)du

= G(T0, T1)r(T0) +

∫ T1

T0

G(u, T1) [θ(u) + σ(u)dW (u)] .

= G(T0, T1) [f (0, T0) + x(T0)] +

∫ T1

T0

G(u, T1) [θ(u) + σ(u)dW (u)] .

This yields

▶ Integrated short rate I(T0, T1) is normally distributed, thus
exp {I(T0, T1)} is log-normal.

▶ Variance of I(T0, T1) can be calculated via Ito isometry

ν̄2 = Var [I(T0, T1) | Ft ] = G(T0, T1)2Var [x(T0) | Ft ]+

∫ T1

T0

[G(u, T )σ(u)]
2

du.
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With continuous rate approximation compounded rate
caplet can also be priced via Black formula

Corollary
With continuous rate approximation

∏k
i=1 (1 + Liτi) ≈ exp

{∫ T1

T0
r(u)du

}

Theorem p.345 (thm:Ois-caplet-florlet-pricing) remains valid with the
adjustment that log-variance ν2 is replaced by ν̄2 with

ν̄2 = G(T0, T1)2Var [x(T0) | Ft ] +

∫ T1

max{t,T0}

[G(u, T )σ(u)]
2

du.
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How do log-variance ν2 and ν̄2 compare? (1/2)

We have (daily compounding)

ν2 = G(T0, T1)2Var [x(T0) | Ft ]

+

k−1∑

j=1

1{t≤tj−1}G(tj , tn)2

∫ tj

tj−1

[

e−a(tj −u)σ(u)
]2

du

≈ G(T0, T1)2Var [x(T0) | Ft ] +

k−1∑

j=1

1{t≤tj−1}G(tj , tn)2σ(tj)
2 (tj − tj−1)

versus (continuous compounding)

ν̄2 = G(T0, T1)2Var [x(T0) | Ft ] +

∫ T1

max{t,T0}

[G(u, T )σ(u)]
2

du.
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How do log-variance ν2 and ν̄2 compare? (2/2)

ν2 ≈ G(T0, T1)2Var [x(T0) | Ft ] +

k−1∑

j=1

1{t≤tj−1}G(tj , tn)2σ(tj)
2 (tj − tj−1)

ν̄2 = G(T0, T1)2Var [x(T0) | Ft ] +

∫ T1

max{t,T0}

[G(u, T )σ(u)]
2

du.

▶ Variance from t to T0, G(T0, T1)2Var [x(T0) | Ft ], coincides in both
approaches

▶ Variance during compounding period from T0 to T1 differs slightly
between approaches

Log-variance ν2 (daily compounding) can be viewed as numerical
integration (or quadrature) scheme for ν̄2 (continuous compounding).
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Do we really need a term structure model - like Hull White
model - to price caplets on compounded rates?

We establish a relation between standard (forward-looking) Libor rates
and compounded (backward-looking) rates.
▶ Standard Libor rate with fixing time T , start time T0 and end time

T1 (no tenor basis) is

L(T , T0, T1) =

[
P(T , T0)

P(T , T1)
− 1

]
1

τ(T0, T1)
.

▶ We can define forward Libor rate L(t, T0, T1) which lives for t prior
to T .

▶ We have martingale property of forward Libor rates L(t, T0, T1) for
t ≤ T and well understood Vanilla models

dL(t, ) = σL(t) · dW (t)

(e.g. Normal model, shifted SABR model, ... - depending on choice
of σL(t)).

How can we extend Libor rate models to compounded rates

C1 =
{[
∏k

i=1 (1 + Liτi)
]

− 1
}

1
τ(T0,T1) ?
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We generalise the definition of forward Libor rates to
capture backward-looking compounded rates

Use continuous rate approximation for overnight rate,

1 + Liτi ≈ exp
{∫ ti

ti−1
r(u)du

}

. This yields

C1 =

{

exp

{
∫ T1

T0

r(u)du

}

− 1

}

1

τ(T0, T1)

Define generalised forward rate

R(t) =
1

τ(T0, T1)







[
P(t,T0)
P(t,T1) − 1

]

t ≤ T0



exp

{∫
t

T0
r(u)du

}

P(t,T1) − 1



 T0 < t ≤ T1

.

▶ R(t) is a martingale in T1-forward measure (by construction).

▶ R(t) coincides with standard forward Libor rate L(t, T0, T1) for all t
until fixing time T .

▶ R(T1) is equal to compounded rate C1.
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Now we can specify a Vanilla model for the generalised
forward rate

We specify a Vanilla model for the generalised forward rate as

dR(t) = σR(t) · dW (t).

Here, W (t) is a Brownian motion in T1-forward measure and σR(t) is an
adapted volatility process.

How can we specify volatility σR(t)?

For t ≤ T R(t) = L(t, T0, T1), thus also dR(t) = dL(t, ).

▶ We use standard Libor rate volatility σR(t) = σL(t) for t ≤ T .

▶ But what can we do for T0 < t ≤ T1?
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We need to take into account that between T0 and T1

more and more overnight rates get fixed

▶ At observation time t → T1 we get that r(u), with u ≤ t in

C1 =
{

exp
{∫ T1

T0
r(u)du

}

− 1
}

1
τ(T0,T1) is deterministic.

▶ Volatility of coupon decreases to zero as t → T1.

Assume linear decay of volatility of generalised forward rates,

σR(t) =
T1 − t

T1 − T0
· σ(t), T0 < t ≤ T1.

For backbone volatility σ(t) we can use same type of model as for Libor
volatility σL(t).
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Let’s have a look at a simple example Vanilla model with
normal dynamics and constant volatility

dR(t) = min

{

1,
T1 − t

T1 − T0

}

· σ · dW (t).

▶ Final rate R(T1) = C1 is normally distributed. Option on C1 can be
priced with Bachelier formula

▶ Integrated variance of C1 at observation (pricing) time t < T0

becomes

ν2 =

∫ T1

t

[

min

{

1,
T1 − t

T1 − T0

}

· σ

]2

dt

= σ2 · (T0 − t) +
1

3
σ2 (T1 − T0) ·

▶ Analogous derivation holds for shifted Log-normal model for R(t)

▶ Compare with integrated variance in Hull-White model for mean
reversion a → 0!
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We can re-use Vanilla and term structure models to price
caps and floors on compounded rate coupons

▶ Compounded overnight rate coupon rates are

C1 =

{[
k∏

i=1

(1 + Liτi)

]

− 1

}

1

τ
≈

{

exp

{
∫ T1

T0

r(u)du

}

− 1

}

1

τ

▶ Terminal distribution of C1 and caplets/floorlets on C1 can be
calculated using Hull-White model

▶ A generalisation of Libor forward rates to the compounding period
T0 to T1 yields generalised forward rates R(t) for which we can
specify Vanilla models
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