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Introduction and Agenda



What is this lecture about?

Interbank swap deal example

Pays 3% on 100mm EUR
Start date: Oct 30, 2020
End date: Oct 30, 2040

(annually, 30/360 day count, modified following, Target calendar)

Pays 6-months Euribor floating rate on 100mm EUR
Start date: Oct 30, 2020
End date: Oct 30, 2040

(semi-annually, act/360 day count, modified following, Target calendar)

Suppose, Bank A may decide to early terminate deal in 10, 11, 12,.. years

How does early termination option affect the present value and risk of the deal?



Organisational details first

> Lecture: Fri, 13:15 - 14:45 s.t., RUD26, R. 1.304 (plus some
additional times)

> Exercises: Fri, 15:00 - 16:30, RUD26, R. 1.304 (every second week,
some exceptions)

> Office times: Fridays on request before or after the lecture

Exercises:
> Discuss and analyse practical examples and theory details
» Main tool: QuantLib (open source financial library)

» Implementation: Python, some Excel

Requirements:
> Present at least once during exercises
» exam planned for July 28, 2023



Literature and resources you will need

> Literature

> L. Andersen and V. Piterbarg. Interest rate modelling, volume | to
11
Atlantic Financial Press, 2010

> D. Brigo and F. Mercurio. Interest Rate Models - Theory and
Practice.
Springer-Verlag, 2007

» S. Shreve. Stochastic Calculus for Finance Il - Continuous-Time
Models.
Springer-Verlag, 2004

> QuantLib web site www.quantlib.org
> Official source repository www.github.com/lballabio

> Some extensions which we might use
www.github.com/sschlenkrich

» https://www.applied-financial-mathematics.de/
interest-rate-modelling-summer-term-2023


www.quantlib.org
www.github.com/lballabio
www.github.com/sschlenkrich
https://www.applied-financial-mathematics.de/interest-rate-modelling-summer-term-2023
https://www.applied-financial-mathematics.de/interest-rate-modelling-summer-term-2023

Let's revisit the introductory example

Interbank swap deal example
Fixed interest rate

Pays 3% on 100mm EUR Notional
Start date: Oct 30, 2020
art date: et 9, Dates
End date: Oct 30, 2040 Market conventions

(annually, 30/360 day count, modified following, Target calendar)

Stochastic interest rates Pays 6-months Euribor floating rate on 100mm EUR
Start date: Oct 30, 2020
End date: Oct 30, 2040
(semi-annually, act/360 day count, modified following, Target calendar)
Optionalities
Bank A may decide to early terminate deal in 10, 11, 12,.. years



Agenda covers static yield curve modelling, Vanilla rates
models and term structure models

Interest Rate Modelling

» Stochastic calculus basics

> Static yield curve modelling and linear products

» Vanilla interest rate models

» HJM term structure modelling framework

» Classical Hull-White interest rate model

> Pricing methods for Bermudan swaptions
Model Calibration

> Multi-curve yield curve calibration

» Hull-White model calibration

» Numerical methods for model calibration
Sensitivity Calculation

> Delta and Vega specification

» Numerical methods for sensitivity calculation
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We start with stochastic processes and probability space

Stochastic process (for assets or interest rate components)
T
X(t) = [Xa(t), - Xp(B)]

Probability space that drives stochastic process (2, F,P)

> Q sample space with outcomes w (typically increments of Brownian
motions),
» F o-algebra on Q,

> P probability measure on F.

Information flow is realised via filtration {F;, t € [0, T]}

> F; sub-algebra of F with F; C F; for t <'s,
> Assume X(t) is adapted to filtration F;, i.e. X(t) is fully observable
at time t.



Measures can be linked by Radon—Nikodym derivative

Theorem (Radon—Nikodym derivative)

Let P and P be equivalent probability measures on (Q, F). Then there
exists a unique (a.s.) non-negative random variable R(w) with
EF [R] = 1, such that for all A€ F

P(A) =E" [R1(a)].

R is denoted Radon—Nikodym derivative.

It follows
P(A) = / dP = / RdP =E" [R1(a].
A A
and also for all measurable functions X (via algebraic induction)
EF [X] = EF [R X].

Thus we may write .
R = dP/dP.



We will frequently need the change of measure for
conditional expectations

Definition (Conditional expectation)

Let X be a random variable. The conditional expectation E¥ [X | F] is
defined as the stochastic variable that satisfies:

» EF[X|F:] is Fi-measurable and
> for all A € F; we have

/EP (X | F d]P’:/Xd]P’.
A A

Theorem (Baye's rule for conditional expectation)
Let R = dP/dP be the Radon-Nikodym derivative associated with
(Q, F,P) and (Q,ﬁ Iﬁv) and X a random variable. Then

EF [R X | Fi]

B XN 7 = SprarAT



We sketch the proof for change of measure (1/2)

We use the definition of conditional expectation and show that (for all
AcF)

/EP[RX\;Ef]dIEn:/EP[R|ft]1E“3’[X|ft]dP.

We have for the left side using conditional expectation and
Radon—Nikodym derivative

/EP[RX\]-}]dIP:/XRd}P’:/XdI@’.
A A A
For the right side we get using conditional expectation
/EP[R|ft]Eﬂ3’[X|ft]dP=/EP [E° [X| R R| F| aP
A A

:/E@[Xm]RdP.
A



We sketch the proof for change of measure (2/2)

Applying Radon—Nikodym derivative and again conditional expectation
yields

/E@[XM]RdP:/E@[X|ft]dlf>:/Xd1@>.
A A A



We will use Frobenius norm in martingale definition

Sum of squares notation (Frobenius norm, L? norm for vectors)
For a matrix or vector A € R™*" with elements {a;;}, ; we denote

Al = \/tr (AAT) =




Martingales allow derivation of expected future values

Definition (Martingale)

Let X(t) be an adapted vector-valued process with finite absolute
expectation EF [|X(t)|] < oo (under the probability measure P) for all
teo, Tl

X(t) is a martingale under P if for all t,s € [0, T] with t <'s

X(t) =EF[X(s) | Fi] a.s.

> Typically, martingale property is derived (by other results) for a
process.

» Then we can use martingale property to obtain expectation of future
values X(T).



Density process describes change of measure for processes
Definition (Density process)
Denote ((t) = EF {d]f”/d]P’ | .7-}} the density process of > (relative to PP).
> Then ((t) is a P-martingale with ((0) = EF [¢(t)] = 1.

Lemma (Change of measure for processes)
Let X(t) be a Fy measurable random variable. Then

EP[X(T) | 7] = EF [CC((QX(T) | ft] .

Proof.
Recall that R = d/dP. We have E” [X(T) | 7] = XTI Then

EF [RX(T)| F.] = EF [EP [RX(T)|Fr] | Fe] = EF [E¥ [R| Fr] X(T) | Fe .

The result follows from the definition of ((t) via ((t) = EF [R|F]. [



Density process may be used to define a new measure

Let {(t) be a P-martingale with {(0) = 1. We choose a final horizon
time T and define the Radon—Nikodym derivative as R(w) = {(T,w).

The corresponding measure I on (Q, Fr) is
P(A) =EF [R1ga] =E" [{(T,w) 11ay] .
We show that the density of P indeed equals ¢(t).

Denote ((t) = EF [R | F:] the density of 2. Then we get with the
martingale property of ((t)

C(t) = EP[¢(T,w) | Fe] = ¢(1).
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Stochastic process is driven by Brownian motion

Information is generated by Brownian motion
> W(t) = [WAi(t),..., Wy(t)]" d-dimensional Brownian motion.
> W;(-) independent of W;(-) for i # j.
> Independent Gaussian increments W;(s) — W;(t) ~ N (0,s — t) for
s> t.

> Typically, filtration F; is generated by Brownian motion W(-), i.e.
Fe=0{W(u),0<u<t}

Definition (H? for volatility processes )

Let 0 : R x Q — RP*? be a volatility process adapted to the filtration
generated by ;. We say that o is in H? if for all t € [0, T] we have

EF [/Ot lo(s,w)|? ds] < 0.



Stochastic process is described as Ito process with Ito
integral

t t
X(t) :X(O)+/ p(s,w) dS-i-/ o (s,w)dW(s)
0 0
or in differential notation
dX(t) = p(t,w)dt + o (t,w) dW(t),

> vector-valued drift 1 : R x Q — RP,
> matrix of volatilities o : R x Q — RP*9
» assume drift 1 and volatility o are adapted to F; and ¢ is in H?.

We consider the Ito integral as

/O o (s,w) dW(s) = nli)n;o_za(s,qw) [W(s) = W(si-)l, si=—t.



Ito integrals are important martingales for modelling

Theorem (Ito Integral properties)
Define the Ito integral X(t) = [ o (u,w) dW(u) with o is in H?. Then

1. X(t) is Fy-measurable (i.e. we can calculate the distribution of X(t)
using (0, F,P))

2. X(t) is a continuous martingale
3. EF {|X(t)\2} = EP [fot \or(u,w)|2 du} < oo (Ito isometry)

4 BF [X(t)X(s)"] =EF [fomin{t’s} o (u,w)o(u,w)" dt}
(auto-covariance)



Stochastic processes can be represented as Ito integrals

Theorem (Martingale representation theorem)

If X(-) is a (local) martingale adapted to the filtration F, which is
generated by Brownian motion W(-) then there exists a volatility process
o (t,w) such that

dX(t) = o (t,w) dW(t).

Moreover, if X(-) is a square-integrable martingale then o is in H>.



[to's Lemma is one of the most relevant tools

Theorem (lto's Lemma)

Let X(t) be an Ito process and f(-) a twice continuous differentiable
scalar function. Then

df (X(t)) = Vxf(X)"dX(t) + %dX(t)THXf(x)dX(t)

with Vxf being the gradient of f and Hxf(x) being the Hessian of f.

Here we use calculus dW;(t)dW;(t) = dt and dW;(t)dW;(t) = 0 for
i

Corollary (Ito product rule)
Let X1(t) and Xy(t) be scalar Ito processes. Then

d [X1(t)Xo(t)] = X1(8)dXa(t) + Xa(t)dX1(t) + dXi(t)dXa(t).
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We specify our market based on assets and trading
strategies

Financial Market
We assume p (dividend-free!) assets X(t) = [X1(t), ..., X,(t)] " which
are driven by Ito processes

dX(t) = p(t,w)dt + o (t,w) dW(t).

Trading Strategy
A trading strategy represents a predictable adapted process (of asset
weights)

¢(t, w) = [d)l(t?w)a cey ¢P(tvw)]T

The value of the trading strategy (or corresponding portfolio) is

m(t) = (1) X(t).

Il.e. no intermediate payments



Self-financing strategies and arbitrage

Trading Gains and Self-financing Strategy

Trading gains (over a short period of time) are ¢(t)" [X(t + dt) — X(t)].
This leads to the general specification ftT o(t) TdX(t).

A trading strategy is self-financing if portfolio changes are only induced
by asset returns (no money inflow or outflow). That is

7(T) — () = / o(s) " dX(s).

Definition (Arbitrage)
An arbitrage opportunity is a self-financing strategy ¢(-) with 7(0) =0
and, for some t € [0, T],

7w(t) >0 a.s., and P (n(t) > 0) > 0.

Arbitrage needs to be precluded in a financial model.



Absence of arbitrage is closely related to equivalent
martingale measures

Definition (Numeraire and equivalent martingale measure)

A numeraire is a positive asset N(t) of our market. An equivalent
martingale measure (corresponding to the numeraire N(t)) is a measure
@ such that the normalised asset prices [Xi(t)/N(t),... ,X,,(t)/N(t)]—r
are Q-martingales.

Fundamental theorem of asset pricing

Assuming some restrictions on permissible trading strategies one can
show that absence of arbitrage is “nearly equivalent” to the existence of
an equivalent martingale measure.

Our models are all based on the assumption of no-arbitrage and the
existence of an equivalent martingale measure.



Equivalent martingale measures exists for any numeraire

(1/2)

Suppose we have a numeraire N(t) and an equivalent martingale measure
QN. Suppose we also have another numeraire M(t). Define

M(t) N(0)
¢(t) = N(t) M(0)

Then

> EV[C(T) | F] =BV [ MR | Fe] s = e ik = C(e), thus ¢(1)

is a QV-martingale

M(0) N(O
> €(0)= W) o) = !



Equivalent martingale measures exists for any numeraire
(2/2)

Define the new measure Q" via the density ¢(t). Then for an asset X;(t)

[ 4 R - [ 2 )
Taking out what is known and using the martingale property of measure
QN yields

Xi(T)
M(T)

N(t) Xi(t)  Xi(t)
M(t) N(t) — M(t)’

o [XU0) 5] - MO g X

Xi(t)/M(t) is a QM-martingale. Thus Q" is an equivalent martingale
measure for M(t).



Trading strategies need to be permissible

Definition (Permissible trading strategy)

Let X(t) be an Ito process and Q an equivalent martingale measure with
numeraire N(t). A self-financing trading strategy ¢(t) is called

permissible if
‘ T X(5)>
oo (3
is a Q-martingale.

Recall that X(t)/N(t) is a Q-martingale by construction. If ¢(t) is
sufficiently bounded then it is also permissible.

Theorem (Martingale property for trading strategies)

For any self-financing and permissible trading strategy ¢(t) and an
equivalent martingale measure Q with numeraire N(t) the discounted
portfolio price process w(t)/N(t) is a martingale.

On average you can not beat the market when trading in the assets.



We proof the martingale property for trading strategies

Proof.
Recall that 7(t) = ¢(t) " X(t). The self-financing condition may be
written as dr(t) = ¢(t) T dX(t). Applying Ito’s product rule yields

dm((tt))}‘d[”f)/v(t)} W 0| ()]””( | ato)
R L X0 ] oo |5
=00 [ * W* MH

Now the assertion follows directly from the condition that ¢(t) is
permissible. O



Derivative pricing is closely related to trading strategies

Definition (Contingent claim)

A derivative security (or contingent claim) pays at time T the random
variable V/(T) (no intermediate payments). We assume V/(T) has finite
variance and is attainable. That is there exists a permissible trading
strategy ¢(-) such that

V(T)=o(T) ' X(T)a.s.
Then absence of arbitrage yields that the fair price V/(t) of the derivative
security becomes
V(t) = o(t) T X(t) for all t € [0, T].
Consequently,

V(t) _ ¢(t) X(t) _ o [6(T)X(T) |]_-t} _ RO [V(T)

()~ N(D) N(T) N ] ‘

Above arbitrage pricing formula is the foundation of derivative pricing.
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We summarize the key results (cheat sheet)

(2, F,P), Ft, W(t) = dm(T) =
te[0,T] WA(D), ..., Wa()] o(t) " dX(t)
Ef [X | 7] = X() = M=
de | Lioeome | | sfhn
X() = dX(t) = EM [ | 7] =
E"[X(s) | Fi] o (u,w) dW(u) EN [% )fVLI)H ‘]
¢(t) = , Z ) d X(1)
EP I:d]fp/d]P; | ]'-t] df = f'dX + %dX2 d)( )o—dmli/?lg ]
V(t)/N(t) = EX[V(T)/N(T) | F]
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Basic Fixed Income Modelling
Market Setting



First we need to specify the assets in the market (1/2)

Example (Overnight bank account)
» Suppose bank A deposits 1 EUR at ECB at time Ty = 0 (today)
with the right to withdraw money at Ti, say the next day.
» Bank A may leave deposit with ECB as long as they want
» Time T; is measured in years (or year fraction) for simplicity
» ECB pays annualized interest rate r; from T; to T;41

Example also holds for deposits between two banks, e.g. bank A and
bank B.

What is the value of the deposit at a future time Tp?



First we need to specify the assets in the market (2/2)

Denote B; the value of the deposit at time T;. Then
By=1
and

Bi=Bi_1+ri1-(Ti—Ti—1) - Bio1 = [14+ri_1(T; — Ti—1)] - Bi1.



The most basic asset is the money market bank account

Definition (Short rate and (abstract) bank account)

Assume a process r(t) (adapted to the filtration F;) for the
instantaneous interest rate. The rate r(t) is denoted the short rate.

The continuous compounded bank account (or money market account) is
an asset with price B(t) given by B(0) =1 and

dB(t) = r(t) - B(t) - dt.

It follows that the future price of the bank account becomes
t
B(t) = exp {/ r(s)ds} .
0

Short rate r(t) is considered the risk-free rate at which market
participants can lend and borrow money.



The most relevant assets are zero coupon bonds (ZCBs)

(1/2)

ZCBs are fixed future cash flows of unit notional, e.g. 1 EUR in 10y.
Definition (Zero Coupon Bond)

A zero coupon bond for maturity T is an asset with time-t asset price
P(t, T) fort < T and P(T,T)=1.

What is the time-t asset price of a zero coupon bond?



The most relevant assets are zero coupon bonds (ZCBs)

(2/2)

Use risk-neutral pricing formula!

Select money market account B(t) as numeraire and denote Q the
equivalent martingale measure.

Then (with E2[] = EQ[|F4])

P(ET) _ o [P(T, T)

_mQ -171 _ wQ
5 5|~ B (BN S

exp {—/OTr(s)dsH .

Multiplying with B(t) = exp {fot r(s)ds} yields

P(t, T) = E2 lexp {— /T r(s)dsH .



And what is the ZCB price in terms of money ...7

» Formula P(t, T) = E2 [exp {— ftT r(s)dsH is a model-independent
result

> To calculate it more concrete we need to specify a model/dynamics
for short rate r(t)

> Suppose short rate is known deterministic function, then

P(t, T) =exp {—/t r(s)ds} .

> Suppose short rate is fixed, i.e. r(t) = ry, then (even simpler)
P(t, T) = e "(T=0),

For our market we assume that today's prices P(0, T) of all ZCBs (with
maturity T > 0) are known.



Interest rate market consists of money market bank
account and zero coupon bonds

Interest rate market
We consider a market consisting of the money market account B(t) and
zero coupon bonds P(t, T) for t < T as financial assets.

Interest rate derivatives
Interest rate derivatives are contingent claims (or baskets of contingent
claims) depending on realisations of future zero coupon bonds.

> We may restrict modelling to discrete set of ZCBs {P(t, T;)},
(vanilla models).

» Full continuum of ZCBs {P(t, T) |t < T} is modelled via term
structure models.
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Discounted cash flow (DCF) pricing methodology ...

‘ cash flow stream (or leg) ‘

cash flows Vi Vs .. Vi
Pt ottt .
pay times T1 T> Ty

V() o V;
ZoR otk

Denote ET/ [] expectations in T;-forward measures with zero coupon
bond numeraire P(t, T;) (i =1,..., N). Then (change of measure)

V() <=1 [P(t,T) V;
%:,;E [B(t) 'P(T;,Tf)'Ff]‘

With P(T;, T;) = 1 follows

N
V()= P(t, T))-E"[V;| F].

i=1



(DCF) ... is a model-independent concept

‘ cash flow stream (or leg)

cash flows Vi Vs .. Vi
Pt ottt .
pay times T1 T> Ty

N

V()= P(t, T))-ET [V;| ]

» Present value is sum of discounted expected future cash flows.

> If future cash flows are known (i.e. deterministic), then

N

V(t)=>_ P(t, TV

i=1

> In general, challenge lies in calculating ET [V; | F;] using a model.



Part Il
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Credit-risky and Collateralized Discounting
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Static Yield Curve Modelling and Market Conventions
Yield Curve Representations



DCF method requires knowledge of today's ZCB prices

‘ cash flow stream (or leg)

cash flows Vi Vs .. Vi
I A A A A
pay times Ty T Tn

» Assume t = 0 and deterministic cash flows, then

N

V(0)=> P(0,T))- V.

i=1

How do we get today's ZCB prices P(0, T;)?



Yield curve is fundamental object for interest rate
modelling

> A yield curve (YC) at an observation time t is the function of zero
coupon bonds P(t,-) : [t,00) — RT for maturities T > t.

> YCs are typically represented in terms of interest rates (instead of
zero coupon bond prices).

> Discretely compounded zero rate curve zy(t, T) with frequency p,

such that (T—)
N (T
P(t,T) = (1 L w(ET) )) .
p
> Simple compounded zero rate curve zy(t, T) (i.e. p=1/(T —t)),
such that

1

Pt T) = 1+ 2t T) (T —t)

» Continuous compounded zero rate curve z(t, T) (i.e. p = 00), such
that
P(t,T) = exp{-2(t, T)- (T — 1)}



For interest rate modelling we also need continuous
compounded forward rates

Definition (Continuous Forward Rate)

Suppose a given observation time t and zero bond curve
P(t,-) : [t,00) — Rt for maturities T > t. The continuous compounded

forward rate curve is given by

(e T) = _aln(gs_t, 7))

From the definition follows

P(t, T)=exp {— /T f(t, s)ds} .

> For static yield curve modelling and (simple) linear instrument
pricing we are interested particularly in curves at t = 0.

> For (more complex) option pricing we are interested in modelling
curves at t > 0.



We show a typical yield curve example

0.060
—— Cont. forward rate
0.055 Cont. zero rate
—— Annually comp. zero rate
® Input rate
0.050
o 0045 1
2
m
i
‘" 0.040 4
E
Ir
2
[=
— 0.035
Times
0.030 4 October 7th, e
October 5th, .99726
October 5th, .99726
October 5th, .99726
0.025 1 October 5th, .99726
October 7th, .00548
October 6th, .00274
0.020 T T T T T October 5th, 7
0 5 10 15 20 October 5th, 8
Maturity (years) October 5th, 9.00274

October 5th, 10.0027
October 6th, 12.0055

October 5th, 15.0055
October 5th, 20.0082
October 5th, 25.0137
October 5th, 30.0164



The market data for curve calibration is quoted by market
data providers

Euribor vs 6 3/6 basis Swap Spreads
Starting Date (Gadget)
.226/-0.266 16Yrs 1 1Yr .30
.128/-0.168 17Yrs 1 Yrs .80 Sy 5803
.010/-0.030 18Yrs i, : Yrs - 25 10y 66.0
.154/0.114 19Yrs 1 Yrs .90
.293/0.253 20¥rs 1 Yrs
.429/0.389 Yrs
.558/0.518 21¥rs . . Yrs
.678/0.638  22Yrs . . Yrs
.790/0.750 23Yrs 5 o
.892/0.852  24¥rs o o 10Yrs
25Yrs " 5 This page wﬂ.l close 30th April
.983/0.943 6.00pm and re open 7.00am 2nd May
.064/1.024 26Yrs . . 10X12 0.192/0.152
.135/1.095 27Yrs . . 10X15 0.378/0.338
.197/1.157  28Yrs . . 10X20 0.543/0.503
.250/1.210  29Yrs . . 10X25 0.599/0.559
30Yrs B R 10X30 0.616/0.576
35Yrs B E 10X35 0.619/0.579
0
0
0
0

Page live in
London hours ONLY
(between 0700 - 1800)

PODDD DN

40Yrs 5 o 10X40 .614/0.574
45Yrs 5 5 10X45 .604/0.564
50Yrs o o 10X50 .594/0.554
Disclaimer <IDIS> 60Yrs o o 10X60 .584/0.544
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Overview Market Conventions for Dates and Schedules



Recall the introductory swap example

Interbank swap deal example

Pays 3% on 100mm EUR
Start date: Oct 30, 2020
Dates

End date: Oct 30, 2040 Market conventions
(annually, 30/360 day count, modified following, Target calendar)

Pays 6-months Euribor floating rate on 100mm EUR
Start date: Oct 30, 2020
End date: Oct 30, 2040

(semi-annually, act/360 day count, modified following, Target calendar)

How do we get from description to cash flow stream?



There are a couple of market conventions that need to be
taken into account in practice

> Holiday calendars define at which dates payments can be made.

> Business day conventions specify how dates are adjusted if they fall
on a non-business day.

» Schedule generation rules specify how regular dates are calculated.

» Day count conventions define how time is meassured between dates.
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Static Yield Curve Modelling and Market Conventions
Yield Curve Representations
Overview Market Conventions for Dates and Schedules
Calendars
Business Day Conventions
Rolling Out a Cash Flow Schedule
Day Count Conventions
Fixed Leg Pricing

p. 67



Dates are represented as triples day/month/year or as
serial numbers

Date

Friday, July 27, 2018

Monday, August 27, 2018
Thursday, September 27, 2018
Saturday, October 27, 2018
Tuesday, November 27, 2018
Thursday, December 27, 2018
Sunday, January 27, 2019
Wednesday, February 27, 2019
Wednesday, March 27, 2019
Saturday, April 27, 2019
Monday, May 27, 2019

Sunday, January 1, 1900

Serial

43308
43339
43370
43400
43431
43461
43492
43523
43551
43582
43612

EUR Payment
System (TARGET)

FALSE
FALSE
FALSE
TRUE

FALSE
FALSE
TRUE

FALSE
FALSE
TRUE

FALSE

London Bank
Holiday

FALSE
TRUE
FALSE
TRUE
FALSE
FALSE
TRUE
FALSE
FALSE
TRUE
TRUE




A calender specifies business days and non-business days

Holiday Calendar

A holiday calendar C is a set of dates which are defined as holidays or
non-business days.

> A particular date d is a non-business day if d € C.

» Holiday calendars are specific to a region, country or market
segment.

> Need to be specified in the context of financial product.
> Typically contain weekends and special days of the year.
» May be joined (e.g. for multi-currency products), C = C; U Co.

> Typical examples are TARGET calendar and LONDON calendar.

—e

3]
&
&
©
&
L 2

e 0 -
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Business Day Conventions



A business day convention maps non-business days to

adjacent business days
Business Day Convention (BDC)

> A business day convention is a function we : D — D which maps a
date d € D to another date d.

> |t is applied in conjunction with a calendar C.

» Good business days are unchanged, i.e. we(d) =d if d ¢ C.

Following
we(d) =min{d € D\C | d > d}
Preceding & & ® ® ®

we(d) =max{d € D\C | d < d}

Modified Following
Following

oold) = {w§°"°wi"g(d), if Month [d] = Month [wc (d)}

Preceeding
We (d), else
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Rolling Out a Cash Flow Schedule



Schedules represent sets of regular reference dates

Annual Frequency | TARGET Calendar | Modified Following
Start Fri, 30 Oct 2020 FALSE Fri, 30 Oct 2020
Sat, 30 Oct 2021 TRUE Fri, 29 Oct 2021
Sun, 30 Oct 2022 TRUE Mon, 31 Oct 2022
Mon, 30 Oct 2023 FALSE Mon, 30 Oct 2023
Wed, 30 Oct 2024 FALSE Wed, 30 Oct 2024
Thu, 30 Oct 2025 FALSE Thu, 30 Oct 2025
Fri, 30 Oct 2026 FALSE Fri, 30 Oct 2026
Sat, 30 Oct 2027 TRUE Fri, 29 Oct 2027
Mon, 30 Oct 2028 FALSE Mon, 30 Oct 2028
Tue, 30 Oct 2029 FALSE Tue, 30 Oct 2029
Wed, 30 Oct 2030 FALSE Wed, 30 Oct 2030
Thu, 30 Oct 2031 FALSE Thu, 30 Oct 2031
Sat, 30 Oct 2032 TRUE Fri, 29 Oct 2032
Sun, 30 Oct 2033 TRUE Mon, 31 Oct 2033
Mon, 30 Oct 2034 FALSE Mon, 30 Oct 2034
Tue, 30 Oct 2035 FALSE Tue, 30 Oct 2035
Thu, 30 Oct 2036 FALSE Thu, 30 Oct 2036
Fri, 30 Oct 2037 FALSE Fri, 30 Oct 2037
Sat, 30 Oct 2038 TRUE Fri, 29 Oct 2038
Sun, 30 Oct 2039 TRUE Mon, 31 Oct 2039
End Tue, 30 Oct 2040 FALSE Tue, 30 Oct 2040




Schedule generation follows some rules/conventions as well

1. Consider direction of roll-out: forward or backward (relevant for
front/back stubs).

1.1 Forward, roll-out from start (or effective) date to end (or maturity)
date

1.2 Backward, roll-out from end (or maturity) date to start (or effective)
date

2. Roll out unadjusted dates according to frequency or tenor, e.g.
annual frequency or 3 month tenor

3. If first/last period is broken consider short stub or long stub.

3.1 Short stub is an unregular last period smaller then tenor.
3.2 Long stub is an unregular last period larger then tenor

4. Adjust unadjusted dates according to calendar and BDC.



Outline

Static Yield Curve Modelling and Market Conventions

Day Count Conventions



Day count conventions map dates to times or year fractions

Day Count Convention
A day count convention is a function 7 : D x D — R which measures a
time period between dates in terms of years.

We give some examples:

Act/365 Fixed Convention
T(dl, dg) = (d2 - d1) /365
> Typically used to describe time in financial models.

Act/360 Convention
T(dl, d2) = (d2 - dl) /360
> Often used for Libor floating rate payments.
7(d1, d2)




30/360 methods are slightly more involved

General 30/360 Method

> Consider two dates d; and d5 represented as triples of
day/month/year, ie. d = [D17 My, Yl] and dr» = [D27 Mo, Y2] with
Dy e{1,...,31}, My € {1,...,12} and Yy € {1,2,...}.

> Obviously, only valid dates are allowed (no Feb. 30 or similar).
> Adjust Dy — Dl and Dy — Dg according to specific rules.
> Calculate

360 - (Y2 — Y1) +30 - (Mo — My) + (D, — D)

. dy) = .
7(d, ) 360




Some specific 30/360 rules are given below

30/360 Convention (or 30U/360, Bond Basis)
1. Dy = min {Dy,30}.

2. If D; = 30 then D, = min {D,,30} else if D, = D.

30E/360 Convention (or Eurobond)
1. Dl = min{D1,30}.
2. Dy = min {D,,30}.
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Now we have all pieces to price a deterministic coupon leg

Coupon is calculated as

Coupon = Notional x Rate x YearFraction
= 100,000, 000EUR x 3% x 7

[ valDate Thu, 01 Oct 2020 |
Annual Freq y | TARGET Calendar | Modified F ing |_D1| D2| tau | Rate | Coupon P(0,T) | P(0,T)*Cpn
Start Fri, 30 Oct 2020 FALSE Fri, 30 Oct 2020
Sat, 30 Oct 2021 TRUE Fri, 29 Oct 2021 30| 29| 0.997|3.00%| 2,991,667 0.9713| 2,905,943
Sun, 30 Oct 2022 TRUE Mon, 31 Oct 2022 29| 31| 1.006|3.00%| 3,016,667 0.9451| 2,850,916
Mon, 30 Oct 2023 FALSE Mon, 30 Oct 2023 30| 30| 1.000|3.00%| 3,000,000 0.9192| 2,757,657
Wed, 30 Oct 2024 FALSE Wed, 30 Oct 2024 30 30| 1.000|3.00%| 3,000,000 0.8927| 2,678,166
Thu, 30 Oct 2025 FALSE Thu, 30 Oct 2025 30 30| 1.000|3.00%| 3,000,000 0.8646| 2,593,664
Fri, 30 Oct 2026 FALSE Fri, 30 Oct 2026 30 30| 1.000|3.00%| 3,000,000 0.8345| 2,503,445
Sat, 30 Oct 2027 TRUE Fri, 29 Oct 2027 30| 29| 0.997|3.00%| 2,991,667 0.8031| 2,402,572
Mon, 30 Oct 2028 FALSE Mon, 30 Oct 2028 29| 30| 1.003|3.00%| 3,008,333 0.7704| 2,317,730
Tue, 30 Oct 2029 FALSE Tue, 30 Oct 2029 30 30| 1.000|3.00%| 3,000,000 0.7373| 2,211,969
Wed, 30 Oct 2030 FALSE Wed, 30 Oct 2030 30 30| 1.000|3.00%| 3,000,000 0.7039| 2,111,644
Thu, 30 Oct 2031 FALSE Thu, 30 Oct 2031 30 30| 1.000|3.00%| 3,000,000 0.6713| 2,013,762
Sat, 30 Oct 2032 TRUE Fri, 29 Oct 2032 30| 29| 0.997|3.00%| 2,991,667 0.6401| 1,915,033
Sun, 30 Oct 2033 TRUE Mon, 31 Oct 2033 29| 31| 1.006|3.00%| 3,016,667 0.6103| 1,841,155
Mon, 30 Oct 2034 FALSE Mon, 30 Oct 2034 30| 30| 1.000|3.00%| 3,000,000 0.5822| 1,746,731
Tue, 30 Oct 2035 FALSE Tue, 30 Oct 2035 30 30| 1.000|3.00%| 3,000,000 0.5555| 1,666,418
Thu, 30 Oct 2036 FALSE Thu, 30 Oct 2036 30 30| 1.000|3.00%| 3,000,000 0.5300| 1,590,074
Fri, 30 Oct 2037 FALSE Fri, 30 Oct 2037 30| 30| 1.000/3.00%| 3,000,000/  0.5060 1,518,029
Sat, 30 Oct 2038 TRUE Fri, 29 Oct 2038 30| 29| 0.997|3.00%| 2,991,667 0.4833| 1,445,981
Sun, 30 Oct 2039 TRUE Mon, 31 Oct 2039 29| 31| 1.006|3.00%| 3,016,667 0.4617| 1,392,766
End Tue, 30 Oct 2040 FALSE Tue, 30 Oct 2040 30| 30| 1.000)3.00%| 3,000,000 0.4413] 1,323,902
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Multi-Curve Discounted Cash Flow Pricing
Classical Interbank Floating Rates



Recall the introductory swap example

Pays 3% on 100mm EUR

Start date: Oct 30, 2020

End date: Oct 30, 2040

(annually, 30/360 day count, modified following, Target calendar)

Stochastic interest rates Pays 6-months Euribor floating rate on 100mm EUR
Start date: Oct 30, 2020
End date: Oct 30, 2040

(semi-annually, act/360 day count, modified following, Target calendar)

How do we model floating rates?



We start with some introductory remarks

> London Interbank Offered Rates (Libor) used to be the key building
blocks of interest rate derivatives (for USD, GBP, JPY, CHF).

» EUR equivalent rate is Euribor rate - we will use Libor synonymously
for Euribor.

> Libor rate modelling has undergone significant changes since
financial crisis in 2008.

> This is typically reflected by the term Multi-Curve Interest Rate
Modelling.

> Recent developments in the market lead to a shift away from Libor
rates to alternative reference rates (Ibor Transition or Benchmark
Reform).

> Alternative rates specifications lead to overnight index swaps.



Let's start with the classical Libor rate model

What is the fair interest rate K bank A and Bank B can agree on?

Bank A (lends 1 EUR at Tp) 1EUR x K x 7
1EUR
. To 7 =1(To, T1)
Trade agreed at T T1
1EUR

Bank B (returns 1 EUR plus interest at T7)
We get (via DCF methodology)

0=V( P(T,To) B [-1| Fr]+P(T,T1)-E"[1+7K | Fr],

T)=
0=—P(T,To)+P(T,T1)- (1 +7K).



Spot Libor rates are fixed daily and quoted in the market
0=—P(T,To)+P(T, 1) (1+7K)

Spot Libor rate

The fair rate for an interbank lending deal with trade date T, spot
starting date Tg (typically Od or 2d after T) and maturity date Ty is

L(T: To, Ty) = [M - 1] 1

P(T, Th) T

> Panel banks submit daily estimates for interbank lending rates to
calculation agent.
> Relevant periods (i.e. [To, T1]) considered are 1m, 3m, 6m and 12m.

» Trimmed average of submissions is calculated and published.

Libor rate fixings used to be the most important reference rates for
interest rate derivatives. Nowadays, overnight rates become the key
reference rates.



Example publication at Intercontinental Exchange (ICE)
and EMMI

& theice com/marketdata/reports/170
ICE LIBOR Historical Rates
USD ICE LIBOR 06-
TENOR PUBLICATION TIVE® SEP-2018
Overnight TS504 AM T8 Q) @ hups//wwwemmi-benchmarks.eu/benchmarks/ A fs 1=
1Week 1055:04 AM 196100 = —
[T Q s =
74 =
1Month 11:55:04 AM omazse |
2Month 11:55:04 AM 2200 | Euribor
3Month 11:55:04 AM 232708
Date 1Week 1Month 3 Months 6 Months 12 Months
6Month 11:55:04 AM 254810
19 Apr 2022 -0572 -0560 -0.468 -0.333 -0.010
1Year 11:55:04 AM 284006




A plain vanilla Libor leg pays periodic Libor rate coupons

L(TOF; To, T1) L(TlF; Tl, Tg)

L(TS 1 Tnv—1, Tn)
ToFl Tf [ T/CT1
= — \ = \ >
|« T1 < 5 ~| \ ™ \
To Ty T, Tn-1
We get (via DCF methodology)

Tn
i=1

N
V() =Y P T) BT LT T T i | R

i=1

N
=3 P Ty B UT T T | F] e
Thus all we need is

BV [L(TF i Tim, T) | Fe] =2



Libor rate is a martingale in the terminal measure (1/2)

Theorem (Martingale property of Libor rate)

The Libor rate L(T; Ty, T1) with observation/fixing date T, accrual start
date Ty and accrual end date T is a martingale in the Ty-forward
measure and

BT LT o T | ] = | i) 1] 3 = L6 Toc )



Libor rate is a martingale in the terminal measure (2/2)

Proof.

Fair Libor rate at fixing time T is

L(T; To, T1) = [P(T, To)/P(T, T1) — 1] /7. The zero coupon bond
P(T, Ty) is an asset and P(T, Ty) is the numeraire in the T;-forward
meassure. Thus FTAP yields that the discounted asset price is a
martingale, i.e.

en [ALT0) 2] PLT)

P(T,Th) TPt Th)
Linearity of expectation operator yields

ET[L(T; To, Th) | Fe] = {En [//zg ;o;m} - 1] 1
_[P(t, To) ’ 1l
{P-(t, T1) ] T



This allows pricing the Libor leg based on today's
knowledge of the yield curve only

LTS To, Th) LT T, T) L(TE 1 Tv-1, Tw)
TOF\ TlF [ TIC\ 1
1 t \ 1 \
\ o \ 5 \ \ ™ \
To Ty T Tn-1 Tn

Libor leg becomes
N
V) =Y P T ET [T T T) | 7]
i=1

N
= E P(t, Ti) - L(t; Ti—1, T3) - 7

i=1



Libor leg may be simplified in the current single-curve

setting
We have u
V() =Y P(t,T) - L(t: i1, T)
i=1
with P(t. ) )
T _ (AT gL
T = [T 1)
This yields
N
P(t, Ti—1) 1
;P(t i) {—(t ) 1] oo

N
=Y P(t,Ti-1) = P(t, T)
i=1

= P(t, To) — P(t, Tn).

We only need discount fators P(t, To) and P(t, Ty) at first date Ty and
last date Tpy.
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Tenor-basis Modelling



The classical Libor rate model misses an important detail

hares and oj] prices plun,

¥ Duncan Economics g

ge, thousands lose jobs
5 zoh Jor

lones industrial avarn....

What if a counterparty defaults?



What if Bank B defaults prior to Tg or 777

What is the fair rate K bank A and Bank B can agree on
given the risk of default?

Bank A (lends 1 EUR at Ty) lggyot{ X TEURX K x 7
1{§B>T1 x 1 EUR
) TO T = T(T07 Tl) .
Trade agreed at T T

1 x 1EU
{€6>To} Bank B (returns 1 EUR plus interest at T7)

» Cash flows are paid only if no default occurs.
> We apply a simple credit model.

» Denote 1p the indicator function for an event D and random
variable &g the first time bank B defaults.



Credit-risky trade value can be derived using derivative
pricing formula

1 1+K-1
B(T) E? [ Vea>oy - gy T Mea> Ty~ B(Tl)] :

(all expectations conditional on Fr)

Assume independence of credit event {53 > T0/1} and interest rate
market, then

K-t
) = 2 el B° | g +8° leeomal B° [P

Abbreviate survival probability Q(T, To1) = E? [1¢¢,> 7,3 | Fr] and
apply change of measure

V(T)=—P(T, To)Q(T, To)E™ [1] + P(T, T))Q(T, TI)E™ [1 + K - 7] .



This yields the fair spot rate in the presence of credit risk

V(T) = —P(T, To)Q(T, To)E™ [1] + P(T, T))Q(T, T)E™ [L + K - 7].

If we solve V(T) =0 and set K = L(T; Ty, T1) we get

) B P(T,T) Q(T,T) 1
HT: 7o, 1) = [P(T, Tf) Q(T, T?) - 1] T

We need a model for the survival probability Q(T, T12).

Consider, e.g., hazard rate model Q(T, T12) = exp {—fTT1’2 )\(s)ds}
with deterministic hazard rate A(s). Then basis factor D( Ty, T1) with

D(To, T1) = m = exp {— g 1 )\(s)ds}

is independent of observation time T.



Deterministic hazard rate assumption preserves the
martingale property of forward Libor rate

Theorem (Martingale property of credit-risky Libor rate)

Consider the credit-risky Libor rate L(T; Ty, T1) with observation/fixing
date T, accrual start date Ty and accrual end date T7. If the basis factor
D(To, T1) is deterministic such that

-D(To, T1) — 1} l,

T

P(T, To)

(T To, Th) = | =20
(T3 70T = | )
then L(t; To, T1) is @ martingale in the Ty-forward measure and

:D(t'7 To)
P(t, T1)

1

- .

ETl [L(T, To, Tl) | .Ft] = L(t; To, Tl) = |: . D(To, Tl) — 1:|

Proof.

Follows analogously to classical Libor rate martingale property. O
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Projection Curves and Multi-Curve Pricing



Forward Libor rates are typically parametrised via
projection curve
> Hazard rate A\(u) in Q(T, T12) = exp {— fTTl’z )\(u)du} is often
considered as a tenor basis spread s(u).

» Survival probability Q(T, T1,2) can be interpreted as discount factor.

> Suppose we know time-t survival probabilities Q(t,-) for a forward
Libor rate L(t, To, To + &) with tenor ¢ (typically 1m, 3m, 6m or
12m). Then we define the projection curve

P(t, T)=P(t, T)- Q(t, T).

» With projection curve P°(t, T) the forward Libor rate formula is
analogous to the classical Libor rate formula, i.e.
Po(t, To) 1
Lo(t, To) = L(t; To, To +0) = | =5t — 1| =.
( ) 0) ( 0, lo+ ) |:P5(t, Tl) T
This yields the multi-curve modelling framework consisting of discount
curve P(t, T) and tenor-dependent projection curves P°(t, T).



There is an alternative approach to introduce multi-curve
modelling

Define forward Libor rate L(t, Ty) for a tenor § as
L(t, To) = BT [L(T; To, To +0) | il

(Without any assumptions on default, survival probabilities etc.)

Postulate a projection curve parametrisation

(. Ty) = {P‘S(t, To) 1} 1

P‘;(t, Tl) ;

» We will discuss calibration of projection curve P°(t, T) later.

» This approach alone suffices for linear products (e.g. Libor legs) and
simple options.

> It does not specify any relation between projection curve P°(t, T)
and discount curve P(t, T).



Projection curves can also be written in terms of zero rates
and continuous forward rates

Consider a projection curve given by (pseudo) discount factors Po(t, T)
(observed today).

» Corresponding continuous compounded zero rates are

_n [P5(t, 7]

» Corresponding continuous compounded forward rates are

Jdln [P‘S(t, T)]

(e, T)=—



We illustrate an example of a multi-curve set-up for

Market data as of July 2016

EUR

Forward Rate f{0,T)

1.40% -

1.20%

1.00% -

0.80%

0.60% -

0.40%

0.20% -

0.00%

-0.20% -

-0.40% -

-0.60% -

-0.80% -

—QIS

3m Euribor =6m Euribor

Maturity T




Libor leg pricing needs to be adapted slightly for

multi-curve pricing
Classical single-curve Libor leg price is

N
V()= Pt T) Lt Tiee, Ti) - 7y
= :;D_(t, To) - P(t, TN)

Multi-curve Libor leg pricing becomes
N
V()= P(t,T)-L°(t, Tia) 7
i=1

with
P5(t, Ti—1) 1 1
Pi(t, T;)

Ti
» Note that we need different yield curves for Libor rate projection and
cash flow discounting.
» Single-curve pricing formula simplification does not work for
multi-curve pricing.

e T - |
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Linear Market Instruments
Vanilla Interest Rate Swap



With the fixed leg and Libor leg pricing available we can
directly price a Vanilla interest rate swap

float leg (EUR conventions: 6m Euribor, Act/360)

m

Th

S
—

fixed leg (EUR conventions: annual, 30/360)

Present value of (fixed rate) payer swap with notional N becomes

m n
V() =Y N-L7(t, Tjy) % P(t, T;) = D N -K -7 P(t, T)).
j=1 i=1



Vanilla swap pricing formula allows us to price the
underlying swap of our introductory example

Interbank swap deal example

Pays 3% on 100mm EUR
Start date: Oct 30, 2020
End date: Oct 30, 2040

(annually, 30/360 day count, modified following, Target calendar)

Pays 6-months Euribor floating rate on 100mm EUR
Start date: Oct 30, 2020
End date: Oct 30, 2040

(semi-annually, act/360 day count, modified following, Target calendar)



We illustrate swap pricing with QuantLib/Excel...

> see YieldCurvesAndLegs.xlsx
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Forward Rate Agreement (FRA)



Forward Rate Agreement yields exposure to single forward
Libor rates

Y

floating rate TL%(Tg)
14+7L5(TF)

% ]/‘\

fixed rate payment 1+-rL5 (TF)

—_— L 5]

To+ 6

-

> Fixed rate K agreed at trade inception (prior to t).
> Libor rate L°( Tk, To) fixed at Tr, valid for the period Ty to Ty + 6.

> Payoff paid at Ty is difference 7 - [L°(TF, To) — K| discounted from

Ty to To with discount factor [1+ 7 L(TF, To)]fl, ie.

T [L%(Tf, To) — K]
1 +7- L5(TF, To) '

V(To) =



Time- T FRA price can be obtained via deterministic basis
spread model

[L°(TF, To)—K]

Note that payoff V( TO) = m

Thus (via DCF)

is already determined at Tf.

7+ [L°(TF, To) — K]
1+T~L6(TF7T0) ’

V(Te) = P(Tg, Ty) - V(To) = P(TE, To) -

Recall that (with T3 = T + 9)

‘6(]F ‘0) I (]F ‘0)
1 § ) )
( F 0) P5(TF7T1) P(TF, Tl) ( 0 1)

Then
1 P(TEr, T1)
V(TE) = P(Tr, To) - 7 [LO(TF, To) — K] - : :
(Te) = P(Tr, To) - 7+ [L°(Tr, To) — K| D(To.T1)  P(Tr.To)
1

=P(Te, T1) 7 [L°(TF, To) — K] - BT T



Present value of FRA can be obtained via martingale
property

Derivative pricing formula in T;-terminal measure yields

V(t) 1 [P(Te, T1) 1
ety C | PTe Ty TETR T K g
—T. [ETI [Lé(TF, TO)] _ K] . ﬁ
=7 [L°(t, To) — K] - ﬁ.

Using 1 +7- L9(t, To) = gg:;‘g - D(To, T1) (deterministic spread
assumption) yields

-1

P(t, To) - D(To, Th)

'D(ta Tl)

V(t) = P(t, To) - 7 - [L°(t, To) — K] -

[L5(t, To) — K] T

= P(t, Ty) - .
(t, To) 1+7-L5(t, To)
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Overnight Index Swap



Overnight index swap (OIS) instruments are further
relevant instruments in the market

compounding leg

—

1

‘T :or:lp;u_ndTng_Ie_g_co:p;n_wi_th_cgm_po_un_din_g_rags _Cl_ T _k _______ ‘_ - _\
| observation d c [T, o] - |
| observation dates ty, , b ~(To. 1) |
| \
| \
} overnight rates L; = L(ti—1; ti—1, t;) ‘
| T S R T A A
‘ I I I I I I I I I I I |

— I
lto=To t tr T —1d th—1 ty = Tl‘
| i



We need to calculate the compounding leg coupon rate

> Assume overnight rate L; = L(t;_1;t;_1,1t;) is a credit-risk free Libor
rate. In practice often simply called risk-free rate (RFR)

> Compounded rate (for a period [Ty, T1]) is specified as

k
1

» Coupon payment is at T3.

> For pricing we need to calculate

k
ET (G| Fe] = ET l{ [H (1+ L)
i=1

= {]ET1

1
1}%:1)'4

‘ 1
(1+ Limy) | Fe| = _—
[T 1017 -1 s




How do we handle the compounding term?

Overall compounding term is

—

(1+Lm) = H 1+ L(ti—1; tiz1, ti)7i] -

i=1

Individual compounding term is

P(ti_1, ti_ 1 P(ti_1,ti_
1+ L(tiq; tiog, t) =1+ [ (tis 1) — 1} M

P(ti_1,t;) ;Ti: P(ti—1,t;)
We get

k

117 —
,,11 1+ Limi) H P(t;— 1,t, HP(t, L t)

We need to calculate the expectation of H, 1 ﬁ



Expected compounding factor can easily be calculated

Lemma (Compounding rate)

Consider a compounding coupon period [Ty, T1] with overnight
observation and maturity dates {to, t1,...,tk}, to = To and tx = T;.

Then
1
Fry| = 5.
[HP b)) T] P(To, Th)

For the proof we use the notation ET* [-| F;] = E/* [1].



We proof the result via Tower Law of conditional
expectation

B ~
1
T _ T T
ET; lH P(t,'_l, t,')‘| - ET; Etkl 2

i=1

k

1
H P(t,'_l, t,')‘| ‘|

i=1

[k 1 P(tk_l tk—l)
_ ETI T: )
To H Bas [ P(tk—1, 1)

I17

= ETl

1 P(tk—2, tk_1)
-1 P(tica t) Ptz t)

-2
1
= EJ
1:[ P(t, 1, & (tk27tk)]

1
_ ETI
To | P(to, tk)}
1

P(Ty, T1)




Expected compounding rate equals Libor rate

> Expected compounding rate as seen at start date Ty becomes

1 1
E™ = -1 = L(Ty: To, T1).
[Cl |fT0] |:P(T07 T]) :| T(T(), T]_) ( 0, 10y 1)

> Consequently, expected compounding rate equals Libor rate for full
period.

> Moreover, expectations as seen of time-t are

k

1
H P(ti_1, t;) |7

i=1

. P(f, To)
- P(t, Th)

ET

and

'D(ta TO) 1

P(t, T1) 1} (To Ty~ Kt To. T):

E™ (G |7 = |



Compounding swap pricing is analogous to Vanilla swap
pricing

compounding leg G

To T e
fixed leg
K K K

V()= N-EF[G|F] -7 P(t, )= > N-K-7-P(t, T})
j=1

-

j=1

I
.ME

N'L(t;TJ'—lvTJ')'TJ"P(t’n)_ZN'K'U'P(thj)'
1 j=1

J



Outline

Linear Market Instruments

Summary linear products pricing



As a summary we give an overview of linear products
pricing
Vanilla (Payer) Swap

m

Swap(t) = > N-L°(t,T1) % P(t, 7)) =Y N-K-7-P(t,T)
j=1

i=1

float leg fixed Leg

Market Forward Rate Agreement (FRA)

1
FRA(t) = P(t,To) -[L°(t, To)—K] 7+ —
(t) (t,To) -[L(t, To)—K] -7 T (0T
M —_——

discounting to Ty payoff
discounting from Tg to To+8

Compounding Swap / OIS Swap

CompSwap(t ZN L(t; s, Tj) 7 P(E,T) = Y N-K -7+ P(t, T))

compounding leg fixed leg



Further reading on yield curves, conventions and linear
products

» F. Ametrano and M. Bianchetti. Everything you always wanted to
know about Multiple Interest Rate Curve Bootstrapping but were
afraid to ask (April 2, 2013).

Available at SSRN: http://ssrn.com/abstract=2219548 or
http://dx.doi.org/10.2139/ssrn.2219548, 2013

» M. Henrard. Interest rate instruments and market conventions guide
2.0.
Open Gamma Quantitative Research, 2013

» P. Hagan and G. West. Interpolation methods for curve
construction.

Applied Mathematical Finance, 13(2):89-128, 2006
On current discussion of Libor alternatives, e.g.

» M. Henrard. A quant perspective on ibor fallback proposals.
https://ssrn.com/abstract=3226183, 2018


https://ssrn.com/abstract=3226183

Outline

Credit-risky and Collateralized Discounting



So far we discussed risk-free discount curves and tenor
forward curves - now it is getting a bit more complex

6m projection curve
for L°™(t, T)

T

Risk-free curve for 3m projection curve
P(t, T) - for L3m(t, T)

N

Credit-risky discount Collateral discount
curves curves

Specifying appropriate discount and projection curves for a financial
instrument is an important task in practice.



Outline

Credit-risky and Collateralized Discounting
Credit-risky Discounting



Discounting of bond or loan cash flows is subject to credit
risk

Lgep>Tyy - (1+Kr)
Investor lends 1 EUR notional

to bank at Ty Ligs7y - KT
LN I N N N S B A .
T T Tn
Bank returns perodic interest K -7 at Tq,..., Ty

and 1 EUR notional at Ty

» Cash flows are paid only if no default occurs.

» Denote 1p the indicator function for an event D and random
variable &g the first time bank defaults.

> Assume independence of credit event {{g > T} and interest rate
market



We repeat credit-risky valuation from multi-curve pricing

Consider an observation time t with Tg < t < Ty then present value of
bond cash flows becomes

V(t) 1 Kt

R EQ 1

B(t) {&8>Tn} pr 1\ B(T ) + ;t {EB>T}B(T) |]:t
Independence of credit event {{g > T} and interest rate market yields
(all expectations conditional on F;)

B(JZEQ[H{gprN}]E { ] ST EC [1ggsry] EC {B;((;)]'

Ti>t

Denote survival probability Q(t, T) = E? [1¢,~ 7} | F¢] and change to
forward measure, then

V(t) = Q(t, Tw)P(t, Tn) + > Q(t, T:)P(t, T)K.
Ti>t



Survival probabilities are parameterized in terms of spread
curves - this leads to credit-risky discount curves

Assume survival probability Q(t, T) is given in terms of a credit spread

curve s(t) and
-
Q. T) =exp{—/ s(u)du}.

Also recall that discount factors may be represented in terms of forward

rates f(t, T) and
-
P(t, T) =exp {—/ f(t, u)du} .
t

We may define a credit-risky discount curve PE(t, T) for a bond or loan
as

PB(t7 T)=Q(t, T)P(t, T) = exp {—/t [f(t,u) + s(u)] du} .



We can adapt the discounted cash flow pricing method to
cash flows subject to credit risk

Present value of bond or loan cash flows become

V(t) = PB(t, Tn) + > PB(t, THKT.
T:>t

> Bonds are issued by many market participants (banks, corporates,
governments, ...)

> Credit spread curves and credit-risky discount curves are specific to
an issuer, e.g. Deutsche Bank has a different credit spread than
Bundesrepublik Deutschland

> Many bonds are actively traded in the market. Then we may use
market prices and infer credit spreads s(t) and credit-risky discount
curves PB(t, T)



Outline

Credit-risky and Collateralized Discounting

Collateralized Discounting



For derivative transactions credit risk is typically mitigated
by posting collateral

V(0)
T o
<_dg(tl> . _dg(t)_ o
r(e)C(tyde | O A re(e)C(e)de pank B
_an, _an

v(T)

Pricing needs to take into account interest payments on collateral.?

2Collateral amounts C(t) and collateral rates are agreed in Credit Support Annexes
(CSAs) between counterparties.



Collateralized derivative pricing takes into account
collateral cash flows

Collateralized derivative price is given by (expectation of) sum of
discounted payoff

-
e ft r(u)du V( T)

plus sum of discounted collateral interest payments

/t o= J [r(s) — rc(s)] C(s)ds.

That gives

e J U 1 (5) _ re(s)] C(s)ds | Fi




Pricing is reformulated to focus on collateral rate (1/2)
From

V(t) = E@

e J ey oy /t e [T OB 6y ()] C(s)ds |

we can derive:

Theorem (Collateralized Discounting)

Consider the price of an option V/(t) at time t which pays an amount
V(T) at time T >t (and no intermediate cash flows).

The option is assumed collateralized with cash amounts C(s) (for

t <s < T). For the cash collateral a collateral rate rc(s) (for

t <s< T)is applied.

Then the option price V(t) becomes

V(t) = EC {e 7 re(u)du V(T)| ]_.t]

T s
—E© [/t eift rc(u)du [r(s) — rc(s)][V(s) — C(s)] ds | F:



Pricing is reformulated to focus on collateral rate (2/2)

For further details on collateralized discounting see, e.g.

» V. Piterbarg. Funding beyond discounting: collateral agreements and
derivatives pricing.
Asia Risk, pages 97-102, February 2010

» M. Fujii, Y. Shimada, and A. Takahashi. Collateral posting and
choice of collateral currency - implications for derivative pricing and
risk management (may 8, 2010).

Available at SSRN: https://ssrn.com/abstract=1601866, May 2010



Collateralized discounting result is proved in three steps

1. Define the discounted collateralized price process
t t s d
X(£) = e o @y ) 4 / e J T [(6) — re(s)] C(s)ds
0
and show that it is a martingale
2. Analyse the dynamics dX(t) and deduce the dynamics for dV/(t)

3. Solve the SDE for dV/(t) and calculate price via conditional
expectation



Step 1 - discounted collateralized price process (1/2)

Consider T > t, then
X(T)=e I T + /0 Te*f % H(s) = re(s)] C(s)ds
_ e oy /O S IO s Cls)dst
/t e O ) C(s)ds
_ ey o [e_ S ey, oy 4 / L o e ce)as] +

K(t,T)

/ 509 (6) — re(s)] C(s)ds,




Step 1 - discounted collateralized price process (2/2)

We have from collateralized derivative pricing that

E®[K(t, T)| Fe] = E° [e‘ff’(“)“’“wm / A WU (s) — re(s)] C(s )dsm]

= V(t).

This yields

EC [X(T)| F] = E® [e_ Jo 9 e 7y 4 /O S L ) s Cls)s | ft]
= e OB (e, Ty | R + / T O () re(s)] C(s)os
ey 4 / T L ) — e (o)

= X(t).

Thus, X(t) is indeed a martingale.



Step 2 - dynamics dX(t) and dV/(t)

From X(t) =e f V(t + f f [r(s) — rc(s)] C(s)ds follows

X () = —r(t)e” Jo Uy (et + e S0 ¥ v(e)+
e Je O 1) = (0] C(e)ae
=e fot [dV(t) — r(t)V(t)dt + [r(t) — rc(t)] C(t)dt]
I

el [dV(t) — rc(t)V(t)dt + [r(t) — rc(t)] [C(t) — V(t)] dt].

dM(t)

—e or(

Since X(t) is a martingale we must have that dM(t) are increments of a
martingale.
We get

dV(t) = re(t)V(t)dt — [r(t) — rc(t)] [C(t) — V(t)] dt + dM(t).



Step 3 - solution for V(t) (1/2)
For the SDE dV/(t) = rc(t)V(t)dt — [r(t) — rc(t)] [C(t) — V/(t)] dt + dM(t)
we may guess a solution as

V(t) = A <Oy (1) — / oJ. et {[r(s) — re(s)] [C(s) — V(s)] ds — dM(s)}
Differentiating confirms that
dV(t) = rc(t)eff; <Oy 10)
— re(t) / el T {11(5) — re(SN[C(s) — V()] ds — dM(s)}
— eSO () — (0 [C(e) - V(e de — dM(e)}
— re(t) [eﬁo rc(S)dsV(tO)_
/ 2O () — re($)]C(5) - V()] s — aM(s)}

—[r(t) — re(t)] [C(t) — V(t)] dt + dM(t)
= rc(t)V(t) — [r(t) — rc(t)][C(t) — V(t)] dt + dM(t).



Step 3 - solution for V(t) (2/2)

Substituting t — T and ty — t yields the representation
T T T
v(T) = el v - / el O 1r(s) — re(s)11C(s) ~ V()] ds — am(s))
t

Solving for V/(t) gives

T

V(t)= e Jo ey
T [ e
/ e e Hr(s) = re(s)[V(s) — C(s)] ds — dM(s)}
t

The result follows now from taking conditional expectation

V(t) = EC |:e Jo ey oy - / e SO Ly ()] IV(s) = C(s)] ds | F
+EC [ / "o [ gy g |ft}

0




A very important special case arises for full collateralization

Corollary (Full collateralization)

If the collateral amount C(s) equals the full option price V/(s) for
t < s < T then the derivative price becomes

V() = EC |e Jo @%y(T) | Rl

> Fully collateralized price is calculated analogous to uncollateralized
price.

> Discount rate must be equal to the collateral rate rc(s).

> Pricing is independent of the risk-free rate r(t).

» Collateral bank account BE(t) = exp {fot rc(s)ds} can be

considered as numeraire in this setting



The collateralized zero coupon bond can be used to adapt
DCF method to collateralized derivative pricing

Consider a fully collateralized instrument that pays V(T) =1 at some
time horizon T. The price V/(t) for t < T is given by

!
V(t) = EQ {efr rels)dsy |]-"t} .

Definition (Collateralized zero coupon bond)

The collateralized zero coupon bond price (or collateralized discount
factor) for an observation time t and maturity T > t is given by

PS(t,T) =EY [e‘ﬁ ’C(S’dsft] :

Consider a time horizon T and the time-t price process of a collateralized
zero coupon bond P¢(t, T):

> Collateralized zero coupon bond is an asset in our economy,
> price process P¢(t, T) > 0.
Thus collateralized zero coupon bond is a numeraire.



The collateralized zero coupon bond can be used as
numeraire for pricing

Define the collateralized forward measure Q7€ as the equivalent
martingale measure with P¢(t, T) as numeraire and expectation E7-C [].
The density process of Q7€ (relative to risk-neutral measure Q) is

PS¢, T) BY(0)
(1) = BC(t) PC(0,T)

This yields

J\

Bz
PE(T,T) BC
=5 ey pe 1y V(DI
1 B€(t)
= ey [y I

- PC(:rlf e [e_ by Ift} - et

ETC[V(T)| F] =E2 {




Discounted cash flow method pricing requires to use the
appropriate discount curve representing collateral rates

We have
V(t) = PS(t, T)-ETC[V(T)| F].

.
» Requires discounting curve P¢(t, T) = EV [e_fr re(s)ds |]:t:|

capturing collateral costs and

> calculation of expected future payoffs ET-¢ [V/(T)| F] in the
collateralized forward measure.



We summarise the multi-curve framework widely adopted
in the market

6m projection curve
for L°™(t, T)

T

Risk-free curve for 3m projection curve
P(t, T) - for L3m(t, T)

N

Credit-risky discount Collateral discount
curves PB(t, T) curves PC(t, T)

» Standard collateral curve is also considered as risk-free curve.

> In 2020 standard collateral curves move to €STR collateral rate
(EUR) and SOFR collateral rate (USD).

> Projection curves are potentially not required anymore in the future
if Libor (and Euribor) indices are decommissioned.
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Vanilla Interest Rate Options
SABR Model for Vanilla Options

Summary Swaption Pricing
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Outline

Vanilla Interest Rate Options
Call Rights, Options and Forward Starting Swaps



Now we have a first look at the cancellation option
Interbank swap deal example

Pays 3% on 100mm EUR
Start date: Oct 30, 2020
End date: Oct 30, 2040

(annually, 30/360 day count, modified following, Target calendar)

Pays 6-months Euribor floating rate on 100mm EUR
Start date: Oct 30, 2020
End date: Oct 30, 2040

(semi-annually, act/360 day count, modified following, Target calendar)

Bank A may decide to early terminate deal in 10, 11, 12,.. vears.



We represent cancellation as entering an opposite deal

NERRREE I

, NERE
T l l l Te ilr,l l ’l(rn

[cancelled swap] = [full swap] + [opposite forward starting swap]

Te

| K

|

|

|

||T/71 Th
Al ~
| 1 m
|

|

|

| L

m



Option to cancel is equivalent to option to enter opposite

forward starting swap (1/2)
K

1
Te Tli L J er

> At option exercise time Tg present value of remaining (opposite)
swap is

Lm

VP(Tg) =K - 7 P(Te, T))
i=l

future fixed leg

> L(Te, i1, T +0) -5 P(Te, T)).
=k

future float leg



Option to cancel is equivalent to option to enter opposite
forward starting swap (2/2)

> Option to enter represents the right but not the obligation to enter
swap.

> Rational market participant will exercise if swap present value is
positive, i.e.

VOption(TE) — max{VSWap(TE), O} .



Option can be priced via derivative pricing formula

| iRl

» Using risk-neutral measure, today's present value of option is

|

|

I

|

“Tlfl Ty
I J
|

|

|

|

| L

VOption ( TE)
o

B max{VS""aP(TE),O}
= B(t) - E? [ BT |]-'t] .

VOPten(4) = B(t) - E2 {

» Calculation requires dynamics of future zero bonds P(Tg, T) and
numeraire B(Tg).

Option pricing requires specific model for interest rate dynamics.



Outline

Vanilla Interest Rate Options

European Swaptions



A European Swaption is an option to enter into a swap

(1/2)

Physically Settled European Swaption

A physically settled European Swaption is an option with exercise time
Te. It gives the option holder the right (but not the obligation) to enter
into a

> fixed rate payer (or receiver) Vanilla swap with specified

> start time Tp and end time T, (Tg < To < T,),

> floating rate Libor index payments L‘S(Tjﬁl, 7}_1, 7~'J-_1 + ) paid at
T;, and

> fixed rate K paid at T;.

All properties are specified at inception of the deal.



A European Swaption is an option to enter into a swap

(2/2)

At exercise time Tg swaption value or swaption payoff is

VSR T)

[ <i TE’ i— 1a Tj- 1—"_6)7-.I'D(TE7 J) KiTiP(TEy T,))

+

=0 i=0

Here ¢ = +1 is payer/receiver swaption, []" = max {-,0}.



A European Swaption is also an option on a swap rate

(1/2)

VSwpt( TE)

[ <ZL6 TE,7—J la J 1+5)TJ (TE7 J KZTIP(TEa ))
i=0

J=

= Zr,-P(TE, 7)) -
i=0

S L(Te, Tia, s + 0)5P(Te, ) \]7
i ST orP(Te, T) I

+




A European Swaption is also an option on a swap rate

(2/2)

Float leg, annuity and swap rate

m
float leg FI(Tg) = Z Lo(TE, 7}_1, 7_,'—1 + )7 P(TE, 7-1)
j=0
annuity An(Tg) = ZT;P(TE, Ti)
i=0
S0 L(Te, T, Tima + 0)7P(Te, T)
i TiP(TE, T))

swap rate S(TE)

FI(Te)
An( TE)

VEPH(TE) = An(Te) - [¢ (S(Te) — K)I"



Swap rate is the key quantity for Vanilla option pricing

> Swap rate S(Tg) always needs to be interpreted in the context of its
underlying swap with float schedule {TJ}J Libor index rates L(-)

and fixed schedule {T;},.

» We omit swap details if underlying swap context is clear.

> Fixed rate K is the strike rate of the option.
> At-the-money strike K = S(Tg) is the fair fixed rate as seen at Tg

which prices underlying swap at par (i.e. zero present value).

> Float leg can be considered an asset with time-t value (t < Tg)

m

FI(t) =Y L(t, Tj—1, Tio1 + 0)5P(t, T)).
j=0

> Annuity can be considered a positive asset with time-t value
(t < Te)

An(t) = zn:T,'P(t, Ti).
i=0



Libor rates can be seen as one-period swap rates

> Consider single period swap rate S(Tg) with m=n=1 and
T =7, =71, then
L°(Te, To, To + 8)AP(t, Th)

_ _ |9 T T
S(TE) = 7’1P(t, Tl) =L (TE, To, To + 5)

» Option on Libor rate L°(Tg) is called Caplet (¢ = +1) or Floorlet
(¢ = —1) with strike K, pay time Ty and payoff

= = +
7 [o (L(Te, To, To +0) — K)] .
> Time-Tg price of caplet/floorlet (i.e. optionlet) is
VOP(Te) =7 P(Te, Th) - [ (LO(Te, To, To+8) — K)] .
> Optionlet payoff is analogous to swaption payoff.

Pricing caplets and floorlets is analogous to pricing swaptions. We focus

on swaption pricing.



Swap rate is a martingale in the annuity measure

Definition (Annuity measure)

Consider a swap rate S(-) with corresponding underlying swap details.
The annuity An(t) (t < Tg) is a numeraire. The annuity measure is the
equivalent martingale measure corresponding to An(t). Expectation
under the annuity measure is denoted as EA [-].

Theorem (Swap rate martingale property)

The swap rate S(t) is a martingale in the annuity measure and for
t<T<Te

S Lt T, Tia + 0)FP(6. T)  Fit)
27:0 7',':D(t'7 T,) a An(t)'

Swap rate S(t) is denoted forward swap rate.

Proof.

Annuity measure is well defined via FTAP. The swap rate
S(T)=FI(T)/An(T) is a discounted asset. Thus martingale property
follows directly from definition of equivalent martingale measure. O

S(t) =EA[S(T)| F] =



Swaption becomes call/put option in annuity measure

VO (Te) = An(Te) - [6 (S(Te) — K)]" .

Derivative pricing formula yields

VIWPt(f) EA {VSWpt(TE)

An(t) An(Te) |ft] =E* [0 (S(Te) — K1 | 7).

> [6(S(Te) — K)] " is call (¢ = +1) or put (¢ = —1) option payoff.

> Requires modelling of terminal distribution of S(Tg).

> Must comply with martingale property, i.e. S(t) = EA[S(TEg)| F.



Put-call-parity for options is an important property

We can decompose a forward payoff into a long call and a short put
option

S(Te) — K =1[S(Te) — KI" —[K = S(Te)] ",

EA[S(Te) = K | Fil = B [[S(Te) = K1 | 7] —E* [IK = S(Te)]* | 7).

S() =K =EA|[S(Te) ~ K" | | ~E* [[K = S(Te)]" | 7).
Ak

forward minus strike

undiscounted call undiscounted put

Put-call-parity is a general property and not restricted to Swaptions.



General swap rate dynamics are specified by martingale
representation theorem

Theorem (Swap rate dynamics)

Consider the swap rate S(t) and a Brownian motion W(t) in the annuity
measure. There exists a volatility process o(t,w) adapted to the filtration
F: generated by W(t) such that

dS(t) = o(t,w)dW(t).

Proof.
S(t) is a martingale in annuity measure. Thus, statement follows from
martingale representation theorem. [
» Theorem provides a general framework for all swap rate models.
> Swap rate models (in annuity measure) only differ in specification of
volatility function o(t,w).

We will discuss several models and their volatility specification.
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Basic Swaption Pricing Models



Normal model is the most basic swap rate model

Assume a fixed absolute volatility parameter o and W(t) a scalar
Brownian motion in annuity measure, then

dS(t) = o - dW/(t).

Swap rate S(T) for t < T becomes
S(T)=S5(t)+o-[W(T)— W(t).

Swap rate is normally distributed with

S(T) ~ N (5(t),0*(T —t)).



Normal model terminal distribution of S(T) for
5(0) =050%, T =1, 0 =0.31%

Normal Model Distribution

120 4

100

density

20 1

~0.010 ~0.005 0.000 0.005 0010 0.015 0.020
swap rate



Option price in normal model is calculated via Bachelier
formula

Theorem (Bachelier formula)

Suppose S(t) follows the normal model dynamics
dS(t) = o - dW/(t).
Then the forward Vanilla option price becomes
EA {[¢(5(TE) K |J—}} — Bachelier (S(t), K,oVT —t, qs)
with

Bachelier(F, K, v, ) = v- [CD <¢[F— K]) BIF-KI (fblF—K]ﬂ

v v v

and ®(-) being the cumulated standard normal distribution function.



We derive the Bachelier formula... (1/2)

Aistre) - k117 = [ -k

payoff

1 [s — S(t))?
2702 (T — 1) eXp{202(T— t)}ds'

density

Substitute x = [s — 5(t)] / (o/T — t), then
|:O'\/ T —tx+5(t) — K} L exp {X;} dx

EAL] =
. /[KS(t)]/(am)

V2T
—_— ——
/()
— 0\/7’7/ |:X + S(t) - K] ' (x)dx.
—S(0)]/(ovVT—1) ovT —t

Use
/x<1>’(x)dx = —d'(x).



We derive the Bachelier formula... (2/2)

AT o S(t) - K "(x)dx
EA[] \/T7/ ]/UW)[JFU\/ﬁ]d)()d
_ e SO =K T
=T -1t __¢(X)+O' T—td)(X)}

[K—S(0)/(oVT—F)

Y :o+<b’ (K_S(t)> + K [1“" (:\/_TLE)”

Tl () St (92



Log-normal model is the classical swap rate model

Assume a fixed relative volatility parameter o and W(t) a scalar
Brownian motion in annuity measure, then

dS(t) = o - S(t) - dW(t).

We can substitute X(t) = In(5(t)), and get with Ito formula

1
dX(t) = —502 ~dt + o - dW(t).

Log-swap rate In (5(T)) is normally distributed with

In(S(T))~ N (In(S(t)) - %02 (T —t),0*(T - t)> .



Log-normal model terminal distribution of S(T) for
5(0) =050%, T =1, 0 =63.7%

Log-ormal Model Distribution

175 1
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density
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~0.010 ~0.005 0.000 0.005 0010
swap rate

0.015 0.020




Option price in log-normal model is calculated via Black
formula

Theorem (Black formula)
Suppose S(t) follows the log-normal model dynamice

dS(t) = o - S(t) - dW(t).
Then the forward Vanilla option price becomes
EA [[Qb (5(Te) = K)I* |]-"t] = Black (S(t), K,oV/T —t, ¢>
with

Black(F,K,v,¢) =¢-[F - (¢ -d1) — K-d(¢-da)],
In(F/K) v
di + -

2
v 2

and ®(-) being the cumulated standard normal distribution function.

Proof see exercises.



Shifted log-normal model allows interpolating between log
normal and normal model

Assume a fixed relative volatility parameter o, a positive shift parameter
A and a scalar Brownian motion W(t) in annuity measure, then

dS(t) =o - [S(t) + Al - dW/(t).

We can substitute X(t) = In(S(t) + A), and get with lto formula

dX(t) = —%02 ~dt + o - dW(t).

Log of shifted swap rate In (S(T) + A) is normally distributed with

In(S(T)+ ) ~ N(In(S(t)+)\)—;JZ-(T—t),U2(T—t)>.



Shifted log-normal model terminal distribution of S(T) for
S(0) = 0.50%, T =1, A = 0.5% o = 31.5%

Shifted Log-normal Model Distribution
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In general option pricing formula in shifted model can be
obtain via un-shifted pricing formula

Theorem (Shifted model pricing formula)

Suppose an underlying process S(t) with a Vanilla call option pricing
formula E {(S(T) - K)" |.7-'t} =V (5(t), K). For a shift parameter \
and a shifted underlying process S(t) with

S(t) = S(t) — A
we get the Vanilla call option pricing formula
E[(3(T)-K) " 1] =V B+ K+)).

The same result holds for put option.



We prove shifted model pricing formula

Proof.
With S(t) = S(t) — A we get

E|(S(T)~ K+ A" | 7]
V (S(t), K + A)
V(5(t) + X\ K+ )

E[G(T)-K)" | 7]

> Shifted pricing formula result is model-independent.

> We will apply it to several model.



Now we can apply the previous result to shifted log-normal
model

Corollary (Shifted Black formula)
Suppose S(t) follows the shifted log-normal model dynamics

dS(t) = - (5(t) + \) - dW/(t).
Then the forward Vanilla option price becomes

EA W (35(Te) - K)]* |ft} — Black (S(t) F MK+ NoVT —t, ¢) :

Proof.

Set S(t) = 5(t) + A. Then S(T) is log-normally distributed and Vanilla
options are priced via Black formula. Pricing formula for shifted
log-normal model follows from previous theorem. O



We compare the distribution examples for models
calibrated to same forward ATM price

EA [[S(T) - 5(t)]+] —0.125%, S(0) = 0.50%, T =1, A = 0.5%

Comparison of Model Distributions

— Normal model
175 —— Log-normal medel
—— Shifted Log-nermal model
150
125 |
=
£ 100
=
4
?5 q
50 4
s
ﬂ_
~0.010 ~0.005 0.000 0.005 0010 0015 0.020

swap rate




Outline

Vanilla Interest Rate Options

Implied Volatilities and Market Quotations



Implied Volatilities are a convenient way of representing
option prices
Definition (Implied volatility)

Consider a Vanilla call (¢ = 1) or put option (¢ = —1) on an underlying
S(T) with strike K, and time to option expiry T — t. Assume that S(t)
is a martingale with S(t) = E[S(T)|F:]. For a given forward Vanilla

option price V(K, T —t) =E [(QS [S(T) - K" \Ft} we define the
1. implied normal volatility on such that

V(K, T - t) = Bachelier (S(t), K,on - VT — £,

2. implied log-normal volatility o such that

V(K, T — t) = Black (S(t), Ko VT = t,¢) :

3. implied shifted log-normal volatility oy for a shift parameter A
such that

V(K, T — t) = Black <S(t) FMK+ N osin - VT = t,¢) .



We give some remarks on implied volatilities

» Implied (normal/log-normal/shifted-log-normal) volatility is only
defined for attainable forward prices V/(-,-) .

> Implied volatility (for swaptions) is independent from notional and
annuity.

> For a given (arbitrage-free) model, implied volatilities are equal for
respective call and put options.

> Typically model prices or market prices are expressed in terms of
implied volatilities for comparison. This yields model-implied or
market-implied volatlities.



For rates models, prices are often expressed in terms of
model-implied normal volatilities
EA [[S(T) - 5(r)]+] — 0.125%, S(0) = 0.50%, T =1, A = 0.5%

Comparison of Normal Implied Volatilities

0.007 1 —— Normal model

——  Log-normal model
0.006 1 —— Shifted Log-normal madel

0.005 4

0.004 4

0.003 4

0.002 4

Normal implied volatilities

0.001 4

0.000 1

-0010  -0.005 0.000 0.005 0.010 0015 0.020
frike



Market participants quote ATM swaptions and skew

EUR ATHM Swaption Straddles - BP Volatilities (Calendar day vols)
Please call +44 (0)20 7532 3080 for further details

1M Opt 1;3 4§vo 430 538253 616‘93115§623;225v73g;0

2M Opt | 38.8] 40.9| 44.8| 48.3| 51.4| 58.6| 67.0| 76.3| 82.5| 84.5| 85.5 EUR market

3M Opt | 35.6] 37.3| 41.7| 46.8| 50.9| 58.3| 66.7| 75.0| 80.5| 82.5| 84.1 d £

6M Opt | 34.9| 37.7| 42.1] 46.9] 51.0| 59.3| 66.3| 74.1| 78.7| 80.1| 81.3 ata as o

9M Opt | 35.4] 38.0| 43.1| 47.3]| 51.5| 59.1| 66.9] 73.8| 77.5| 78.7] 79.0

1Y Opt | 37.0| 40.3| 44.3]| 48.1] 52.4| 59.8| 67.0] 73.2| 76.0| 77.2] 77.4 Feb2016

8M Opt | 41.3] 44.7| 48.0| 50.6] 55.0| 61.6] 68.3| 72.6] 74.8| 75.7] 76.1|

2Y Opt | 46.5] 49.4] 52.6| 55.0| 58.2| 63.9| 69.8] 73.0| 74.2]| 75.1] 75.5

3Y Opt | 56.9] 58.8| 60.6| 62.5| 64.4| 68.3| 72.6| 73.2| 72.9| 73.4| 73.7

4Y Opt | 64.1] 65.5] 66.0| 67.4] 68.6] 71.1| 73.8] 72.4| 71.5] 71.1] 71.0

5Y Opt | 68.7] 69.2] 70.0| 70.8] 71.5| 73.0| 74.7| 71.8] 70.2] 69.3] 63.0

7Y Opt | 73.0]1 73.3| 73.6| 73.8| 74.1| 74.5| 74.8] 70.1| 67.6] 66.4] 66.0

0Y Opt | 73.2] 73.8] 74.1| 74.1] 73.8| 73.8] 72.9] 67.7| 64.9] 64.1] 63.3

5Y Opt | 70.8] 71.2] 71.1] 71.0] 70.7| 69.9| 68.4] 62.9] 59.1] 57.8] 56.8

0Y Opt 67.7| 68.4] 6 67,21 _66.61 65, 51 62 A1 S8 51 54 31 52 .01 51

5Y Opt | 64.6] 64.8] 64 EUR Vega - Normal Vol Skews

oY Opt | 60.4] 60.9] 59 Receivers Payers

-200 -150 -100 =50 -25  ATM 425 450 <100 +150 +200

1y2y 22.29]14.02| 5.40| 1.84| 40.72 | 0.91] 4.20]13.83|24.45
1y5y 0.20]-2.25[-2.44]-1.59] 52.79 | 2.29] 5.14]11.97[19.60
1y10y 0.24]-1.69[-2.09|-1.40] 67.86 | 2.10] 4.80]11.53[19.32
1y20y 13.45| 7.57| 2.33| 0.63| 76.97 | 0.67| 2.64 2118.89
1y30y 7.75| 4.34] 1.43| 0.46] 79.14 | 0.16] 1.00] 4.59[10.15
2y2y 11.95| 6.40| 1.54| 0.14] 49.98 | 1.32] 3.90[11.32]19.98
2ySy -3.21]-3.26]-2.23|-1.28| 58.62 | 1.61] 3.52| 8.09[12.38
2y10y -3.50]-2.97|-1.83|-1.01] 70.41 | 1.21| 2.63| 6.04[10.10
2y20y 1.10] 0.20]-0.30|-0.28| 75.04 | 0.57| 1.44] 4.09| 7.81
2y30y 4.86] 2.51] 0.58| 0.07| 76.50 | 0.46] 1.48] 5.08[10.29
Sy2y -1.06]-1.41]-1.15]-0.70] 69.84 .95] 2.14] 5.18] 8.91
5ysy -3.97|-2.93]|-1.73|-0.94] 72.02 | 1.11]| 2.39] 5.42| 9.00
5y10y -3.731-2.55|-1.40(-0.74] 75.23 | 0.84] 1.80| 4.04| 6.69
5y20y -1.66]-1.121-0.68(-0.38] 70.67 | 0.49] 1.10] 2.72| 4.85
5y30y -1.51]-0.99]-0.61]-0.35] 69.54 | 0.47] 1.07| 2.69| 4.86
10y2y -3.45]-2.56|-1.43(-0.75| 74.34 | 0.83| 1.74| 3.79| 6.11
10y5y -4.90]-3.28|-1.70(-0.87| 74.27 | 0.92| 1.89] 4.00| 6.33
10y10y -3.04]-1.95]-1.03[-0.54] 73.26 | 0.60| 1.29] 2.91| 4.89
10y20y -2.31]-1.32]-0.64-0.33| 65.38 | 0.36] 0.78] 1.79| 3.08
10y30y -1.95]-1.17]-0.65/-0.36] 63.77 | 0.46] 1.02] 2.53| 4.54




How do the market data compare to our basic swaption
pricing models?

> We pick the skew data for 5y (expiry) into 5y (swap term) swaption.

» Quoted data: relative strikes and normal volatility spreads in bp:

Receiver Payer
-150 -100 -50 -25 ATM +25 +50 4100 | +150
by5y | -3.97 | -2.93 | -1.73 | -0.94 | 72.02 1.11 2.39 5.42 9.00
Vols | 68.05 | 69.09 | 70.29 | 71.08 | 72.02 | 73.13 | 74.41 | 77.44 | 81.02

> Assume 5y into 5y forward swap rate S(t) at 50bp (roughly
corresponds to Feb'16 EUR market data).




We can fit ATM and volatility skew (i.e. slope at ATM)
with a shifted log-normal model and 8% shift

0.0085
+« market quotes
—— Normal madel
——— Shifted Log-normal model *
0.0080
Z *
E
g 00075 4
k=]
o
=
E
= 0.0070 - .
E .
=
0.0065
ﬂ-ﬂﬂs‘} T T T T T T T
-0.010 —0.005 0.000 0.005 0.010 0.01% 0020
strike

However, there is no chance to fit the smile (i.e. curvature at ATM) with
a basic model.



In practice Vanilla option pricing is about interpolation

Suppose we want to price a swaption with 7.6y expiry, on an 8y swap
with strike 3.15%

1. Interpolate ATM volatilities in expiry dimension.
> Typically use linear interpolation in variance o (T — t).

2. Interpolate ATM volatilities in swap term dimension.
> Typically use linear interpolation.

This yields interpolated ATM volatility J’,?,TM. Then
3. Calibrate models for available skew market data.

> We will discuss models with sufficient flexibility.

4. Interpolate smile models and combine with ATM volatility.

» This yields a Vanilla model for the smile section 7.6y expiry, on an
8y swap term.

5. Use interpolated model to price swaption with strike 3.15%.



Outline

SABR Model for Vanilla Options



The SABR model was the de-facto market standard for
Vanilla interest rate options until the financial crisis 2008

> Stochastic Alpha Beta Rho model is named after (some of) the
parameters involved.

» Original reference is: P. Hagan, D. Kumar, A. S. Lesniewski and D.
E. Woodward: Managing Smile Risk. Wilmott Magazine, July 2002,
86-108.

» Motivation for SABR model was less smile fit but primarily
modelling smile dynamics.

> Smile fit could (in principle) also be realised via local volatility model
dS = o(S) - dW(t)

with sufficiently complex local volatility function o(S).
> We will address smile dynamics later.

» We discuss the model based on the original reference.



Outline

SABR Model for Vanilla Options
Model Dyamics



The SABR model extends log-normal model by local
volatility term and stochastic volatility term

Swap rate dynamics in annuity meassure in SABR model are

dS(t) = a(t) - S(¢)” - dW(t),
dé(t) = v - a(t) - dZ(t),
&(0) = «,

dW(t)-dZ(t) =p- dt.

Initial condition for S(0) is given by today's yield curve.

> Elasticity parameter 3 € (0,1) (extends local volatility).

> Stochastic volatility &(t) with volatility-of-volatility » > 0 and initial
condition o > 0.

» W(t) and Z(t) Brownian motions, correlated via p € (—1,1).

There is no analytic formula for Vanilla options. We analyse classical
approximations.



First we give some intuition of the impact of the model
parameters on implied volatility smile

SABR smiles, T=5, 5(0)=5%

0.0200
= Normal model
001754 — CEV model
— CEV+5V model
00150 CEV+5V+Corr model
=)
E 0.0125
%OOIOD
E
E 0.0075
: 0.0050
0.0025
0.0000 T T T T T T
0.00 002 004 0.06 008 010
strike
\ | SABR | Normal | CEV | CEV+SV | CEV+SV+Corr |
_ ro a 1.00% | 4.50% 4.05% 4.20%
5(t) =5% —3 0 05 05 05
T v 0 0 50% 50%
el P, 0 0 0 70%
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SABR Model for Vanilla Options

Normal Smile Approximation



Approximation result is formulated for auxilliary model
Consider a small € > 0 and a model with general local volatility function
C(S). Then

dS(t) =e-a(t
E-V

)- €(5(1)) - dW (1),
~G(t) - d

Z(t)-

» In the original SABR model C(S) is specialised to C(S) = S¥.
> Approximation is accurate in the order of O (£2).

Q
jo
—~
~
Il

Vanilla option is approximated via Bachelier formula
E* [[6(S(Te) — K)I* | Fe| = Bachelier (S(t), K,ow - /Te — £,6)

» Black formula implied log-normal volatility approximation o,y is also
derived.

> Actually, log-normal volatility approximation was primarily used.

Key aspect for us is approximation of implied normal volatility
ON = ON (S(t) K, Te — t).



We start with the original approximation result

The approximate implied normal volatility is3

ca(S(t) —K) ¢

on (5(t),K, T) = 50 ax (0

L1411 (Sa) - 2T

K  C(x)
with
v S(t)-K V1=2p(+C—p+¢
Sav_ S(t)'K7 CZE é—()s ) 5 X(C):|n< 17/) s
272 — 1? prom 2-3p°
1 o 2 2 2
1" (S.) = T C(S.)" + 2 C(S.) + TR
C'(Sav) C"(Sa)

= C(Sav) ) Y2 = C(Sav)

There are some difficulties with above formula which we discuss
subsequently.

3Eg. A59 in Hagen et.al, 2002.



We adapt the original approximation result

Geometric average S,, = /S(t) - K

> Inspiried by assumption that rates are more log-normal than normal.

> Not applicable if forward rate S(t) or strike K is negative, we use

arithmetic average
Sa = [S(t) + K] /2.

> Arithmetic average is also suggested as viable alternative in Hagan
et al., 2002.
Approximation for ¢ = v/« - [S(t) — K] /C(Say)
> Eq. (A.57¢c) in Hagan et.al., 2002 specifies

C(Sav)

«

V/S(t) dx v 5(t)—K
kK Cx) o

> We use integral representation; consistent with an improved SABR
approximation® .

% See J. Obloj, Fine-tune your smile. Imperial College working paper. 2008



Adapting the ¢ term allows simplifying the volatility
formula

With
C B Z /S(t) dX
otk Cx)

ea(S(t) - K) ¢

S e g
[0 &S /O

we get

7 (5K T) = 14 P (S) - T]

_ga(S(t)—K)g ;(t) ch() [1+/1(5 )827—}
- fi(f) CC?;) x(<) av

— . M ) 1 . g2

_ 0 [1411(Sa) - 2T].

Further, we set € = 1, i.e. omit small time expansion.



This yields normal volatility SABR approximation

SABR model normal volatility on(S, K, T)

The approximated implied normal volatility on (K, T) in the SABR model
with general local volatility function C(S) is given by

on(S(t),K, T)=v- S —K (1411 (Sa) - T

X(¢)
with
S(t) + K v [T ax V1I-2pC+ 3 —p+¢
av:T7 sz Civ X(C):ln — )
a e (x) 1-p
’Y1 o2 PVOt’Yl —3p%
(Sav) = 24 C(Sav) + C(Sav) 2% v,

_ C'(Sa) = C”( Sav)
C(Sa)’ C(Sa)
More concrete, we get with C(S) = S” and 3 € (0,1)

S —KF -1
ng, (t)l_ﬁ , %:5%7 72:B(i_gv )




SABR model ATM volatility needs special treatment

» Implementing oy (S(t), K, T) =v - S(XEC) [1+ /1 (Say) - T] yields
division by zero for K = S(t), i.e. ( =0.

> Use L'Hépital’s rule for limgy_,x (on (S(t), K, T)),

. S(t) - K\ _ 1
s<!r')§f<( (<) )_ 2 %

X dS}S(t):K
1
al! — A/O =1,
=5 VO
6 _vafpoa)
dSlsi—k <« dS|Jk C(x) aC(5(t))

» With limg()—k Sav = S(t) this yields ATM volatility approximation

on(S(t), T)=a-C(S(t)- [1+ M (S(¢)) - T].



Outline

SABR Model for Vanilla Options

Approximation Accuracy and Negative Density



We compare analytic approximation (coloured lines) with

Monte Carlo simulation (coloured stars)

T=1y | T =5y |
00250 0.0250
— Normal — Normal
00225{ __ 23 sy 002251 ig»fsv

——— CEV+SV+Corr —— CEV+SV+Corr

0.0200 0.0200

0.0175 0.0175

0.0150 0.0150

Normal Volatility
Normal Volatility

0.0125 0.0125

0.0100 0.0100 + ¥
.
000751 00075 >

0.0050 0.0050
0.00 0.00

strike

> 5(0) = 5%, on™ = 100bp, B = 0.5 (CEV), v = 0.5 (SV), p = 0.7 (Corr).
> 10° Monte Carlo paths, 100 time steps per year (stars in graphs).
> Approximation less accurate for longer maturities, low strikes, non-zero v

and p.

Poor approximation accuracy is less problematic in practice since SABR
model is primarily used as parametric interpolation of implied volatilities.



Terminal distribution of swap rate S(T) can be derived

from put prices
Consider the forward put price

VP (K) = BA (K = S(T))| = / '; (K — ) ps(ry(s) - ds.

Here ps(7)(s) is the density of the terminal distribution of S(T).
We get (via Leibniz integral rule)

A VP (R) = (K = K) - psry(K) 1= lim_ [(K ~ a) - psr)(3) - 0]

+/Oo 8% [(K =) ps(r(s)] - ds

K
— [ psin(s)- ds = PAS(T) < K)

and
62 ut
s VP (K) = psr) (K).



We may also use call prices for density calculation

Recall put-call parity
VEI(K) = VP(K) = B |(S(T) = K))T| =B |(K = S(T)*] = S(e)-K.

Differentiation yields

a Cca u
9K [Vel(K) — VPY(K)] = -1
and
82 call put K)] =
W[V (K) — VP*(K)] =0.
Consequently
O vea(py = L ymr(k)y 1= PA{S(T) < K} — 1
o VEI(K) = S VPt (K) = 1= PA{S(T) < K}
and o o
WV&“(K) = wVPUt(K) = ps()(K).



Implied Densities for example models illustrate difficulties
of SABR formula for longer expiries and small strikes

SABR densities, T=5, 5(0)=5%

40
/\\\ —— Normal model
! '\ — CEV maodel
0 J." Y — CEV4+5WV model
| CEV+5V+Corr model
0 4

implied density
1=

rate 5(T)
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SABR Model for Vanilla Options

Smile Dynamics



Static skew can be controlled via 5 and p

0.020
—— beta=0.1,nu=0.5rho=0.3
—— beta=0.7,nu=0.5,rho=0.0
00189 — peta=0.9,nu=0.0,rh0=0.0

0.016 4
0.014 4

0.012

Normal Volatility

0.010 4

0.008

0.006 4

T T T T
0.00 0.02 0.04 0.06 0.08 0.10
Strike

> Pure local volatility (i.e. CEV) model does not exhibit curvature.

» We can model similar skew/smile with low and high § and adjusted
correlation p.

» What is the difference between both stochastic volatility models?



How does ATM volatility and skew/smile change if forward
moves?

0.00 0.02 0.04 0.06 0.08 010 0.00 0.02 0.04 0.06 0.08 010

> Low 3 = 0.1 (left) yields horizontal shift, high 5 = 0.7 (right) moves
smile upwards.

» QObservation is consistent with expectation about backbone function
o™ (5(t)) (solid lines in graphs),

on™ (S(t)) = a - C(S(t)) = aS(t)".

> [ also impacts smile on the wings (i.e. low and high strikes).



What is the picture in the pure local volatility model?

0.020

0.018 1

0.016

Normal volatility
o o o
o o o
= e N
o N ~

0.008 1

0.006

0.004 -

0.00 0.62 0.64 0.66 0.68 0.10
. . . swap rate
» Again, high 8 moves smile upwards.

> Vol shape yields appearance the smile moves left if forward moves
right.

» Observation is sometimes considered contradictory to market
observations.



Backbone also impacts sensitivities of the option

Recall e.g. option price

V(t) = Bachelier( (t), K, on (S(t), K, Te) - \/TE,gzb)
We get for the Delta sensitivity

dV(t)
dS(t)

0
gBacheller (S(t),K,UN( ), K, Te) -/ Tk, ¢)

Bachelier-Delta
0 . dUN (t)a K? TE)
%Bacheller (5( ), K.on (S(t), K, Te) -/ Tk, ¢> ds :

Bachelier-Vega related to backbone slope

A =
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SABR Model for Vanilla Options

Shifted SABR Model for Negative Interest Rates



Recall market data example from basic Swaption pricing
models

0.0085
+« market quotes
—— Normal madel
—— Shifted Log-normal model *
00080 A
Z *
E
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-0.010 —0.005 0.000 0.005 0.010 0.015 0020
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Model needs to allow negative interest rates. SABR model with
C(S) = S” does not allow negative rates (unless 3 = 0).



Shifted SABR model allows extending the model domain
to negative rates

Define 5(t) = S(t) — A where S(t) follows standard SABR model. Then

d5(t) = dS(t) = a(t) - [5(t) + A]” - dw/(t),
da(t) =v-a(t) - dZ(t),
&(0) = «,

dW(t)-dZ(t) =p- dt.

» Initial condition for 3(0) is given by today's yield curve.
> Shift parameter A > 0 extends model domain to [— A, +00).
Elasticity parameter 8 € (0, 1) (extends local volatility).

vy

Stochastic volatility &(t) with volatility-of-volatility v > 0 and initial
condition a > 0.

W(t) and Z(t) Brownian motions, correlated via p € (—1,1).

v



We can apply SABR model pricing result to shifted local
volatility function C(S) =[S + A’

Vanilla option is approximated via Bachelier formula

E* ([0 (3(Te) - K)] " 17
= Bachelier (S( ), K, on(K, Te — t) - /Te — t, ¢>
and

5(t) —

O'N(S(t), K,T)=v- R0

[1 +1'(Sa) - T

Details of normal volatility formula need to be adjusted for
C(5) =[S + A]” compared to C(S) = S? in original SABR model.



Shifted SABR normal volatility approximation is straight
forward

Recall general approximation result

- 5(t) - K L
on(S5(t),K, T)=v- (>‘<)(C) 1411 (S) - T
with
2 5(¢) /1T — 2,0 + 2 —
5= 2EE, <=§~/ &5 >2(<)=ln< T pH)’
K p
I(Sav) 24 71 2 (Sav) 4 7en PVC!’Yl C(sav) —2:’/721/27
C'(Sav) C”(Sav)

"= C(Sav) ) Y2 = C(Sav)
For shifted SABR with C(S) =[S+ A]” and 8 € (0,1) we get

[5() + A7 = (K4 A7 W B BB
1_5 ’ Sav+>\’ (Sav‘i‘)\)z.

¢ =

Q!v



Some care is required when marking A and

Linearisation yields

cS) =[5+ A"
~[So+ AP+ B[S+ AP S — S

So+ A ]
—5So| -
B 0

= B[S+ A"t {5+

> Both A and 5 impact volatility skew.
> Increasing A is similar to decreasing 3 (w.r.t. skew around ATM).

» However, only A controls domain of modelled rates.



Shifted SABR model can match example market data

0.0085
+ market quotes
—— Normal madel
—— Shifted Log-normal model
0.0080 1 — Shifted SABR model
z
E
] 0.0075
=
u
=
E
= 0.0070 -
E
[=}
=
0.0065
0.0060 T T T T T T T
—0.010 —0.005 0.000 0005 0010 0015 0020

strike

> T =5y, 5(t) = 0.5%.
» Shifted SABR: A = 5%, a = 5.38%, 5 = 0.7, v = 23.9%,
p=—-2.1%.
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Summary Swaption Pricing



European Swaption pricing can be summarized as follows

1.

Determine underlying swap start date Ty, end date T,, schedule
details and expiry date Tg.

Calculate annuity (as seen today), An(t) =Y 7iP(t, T;).
Calculate forward swap rate (as seen today),

"L T T+ 8) 5 P(e T)) Fi(t)
— j=0 —
S(t) > 1, TPt T) An(t)

Apply a model for the swap rate to price swaption e.g. via (shifted)

SABR model, VS*P(t) = An(t) - EA |[¢ (S(TE) — K)| T | Fel,

4.1 determine/calibrate SABR parameters; typically depending on time
to expiry Tg — t and time to maturity T, — To,

4.2 calculate approximate normal volatility on (S(t), K, T),

4.3 use Bachelier's formula

VSW"t(t) = An(t) - Bachelier (S(t), K,on -/ Te — t, qS) .



We illustrate Swaption pricing with QuantLib/Excel ...
Interbank swap deal example

Pays 3% on 100mm EUR
Start date: Oct 30, 2020
End date: Oct 30, 2040

(annually, 30/360 day count, modified following, Target calendar)

Pays 6-months Euribor floating rate on 100mm EUR
Start date: Oct 30, 2020
End date: Oct 30, 2040

(semi-annually, act/360 day count, modified following, Target calendar)

Bank A may decide to early terminate deal in 10, 11, 12,.. vears



We typically see a concave profile of European exercises

T
ol
™~

204

u [=]
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2oud uondo
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ART-AT

co-terminal swaption



Our final swap cancellation option is related to the set of
European exercise options

> Denote \/,SW"t(t) present value of swaption with exercise time

T € {ly,...,19y}.
» Denote VB™(t) present value of a Bermudan option which allows

to
> choose any exercise time T; € {1y,...,19y} and the corresponding
option,
> (as long as not exercised) postpone exercise decision on remaining
options.
It follows
VBerm(t) > ViSWpt(t) 7 = VBerm(t) > max {‘/’_Swpt(t)}
I
—_———
or MaxEuropean

VBe™ (¢) = MaxEuropean + SwitchOption.



Further reading on Vanilla models and SABR model

» P. Hagan, D. Kumar, A. Lesniewski, and D. Woodward. Managing
smile risk.
Wilmott magazine, September 2002

> M. Beinker and H. Plank. New volatility conventions in negative
interest environment.
d-fine Whitepaper, available at www.d-fine.de, December 2012

> There are a variety of SABR extensions:

> No-arbitrage SABR (P. Hagan et al.),
> Free boundary SABR (A. Antonov et al.),
> ZABR model (J. Andreasen et al.).

> Alternative local volatility-based approach:

» D. Bang. Local-stochastic volatility for vanilla modeling.
https://ssrn.com/abstract=3171877, 2018


https://ssrn.com/abstract=3171877

Part IV

Term Structure Modelling
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HJM Modelling Framework
Hull-White Model

Special Topic: Options on Overnight Rates



Vanilla models

Specify dynamics for a
single swap rate S(T) with
start/end dates To/T, (and
details).

Effectively, only describes

terminal distribution of
S(T).

Allows pricing of European
swaptions.

Can be extended to slightly
more complex options (with
additional assumptions).

What are term structure models compared to Vanilla

Term structure models

Specify dynamics for
evolution of all future zero
coupon bonds P(T, T')
(t<T<T).

Yields (joint) distribution of
all swap rates S(T).

Allows pricing of Bermudan
swaptions and other
complex derivatives.

Typically, computationally
more expensive than Vanilla
model pricing.



Why do we need to model the whole term structure of
interest rates?

Recall

VBem(t) = MaxEuropean 4 SwitchOption.

» MaxEuropean price is fully determined by Vanilla model.

» Residual SwitchOption price cannot be inferred from Vanilla model.

SwitchOption (i.e. right to postpone future exercise decisions) pricing
requires modelling of full interest rate term structure.



Outline

HJM Modelling Framework
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HJM Modelling Framework
Forward Rate Specification



Heath-Jarrow-Morton specify general dynamics of zero
coupon bond prices
Recall our market setting with zero coupon bonds P(t, T) (t < T) and
bank account B(t) = exp {fot r(s)ds
Discounted bond price is martingale in risk-neutral measure.

Martingale representation theorem yields
P(t T t T) T
op(t, T) - dW(t)

where op(t, T) = op(t, T,w) is a d-dimensional process adapted to F.
We also impose op(T, T) = 0 (pull-to-par for bond prices with
P(T,T)=1).

» What are dynamics of (un-discounted) zero bonds P(t, T)?
» What are dynamics of forward rates f(t, T)?

» How to specify bond price volatility?



What are dynamics of zero bonds P(t, T)?

Lemma (Bond price dynamics)
Under the risk-neutral measure zero bond prices evolve according to

dP(t, T) T
Proof.
Apply Ito’'s lemma to d (P(t, T)/B(t)) and compare with dynamics of
discounted bond prices. O

> Zero bond drift equals short rate r(t).
» Zero bond volatility op(t, T) remains unchanged.
» How do we get r(t)?



What are dynamics of forward rates f(t, T)?

Theorem (Forward rate dynamics)

Consider a d-dimensional forward rate volatility process
of(t, T) = o¢(t, T,w) adapted to F;. Under the risk-neutral measure
the dynamics of forward rates f(t, T) are given by

-
/ o¢(t, u)du
t

and (0, T) = fM(0, T). Moreover

df(t, T) = o¢(t, T)" - ~dt +oe(t, T) - dW(t)

T
O’p(t, T) = / Jf(t, u)du.

» Once volatility o¢(t, T) is specified no-arbitrage pricing yields the
drift.

> Model is auto-calibrated to initial yield curve via
£(0, T) = fM(0, T).



We prove the forward rate dynamics (1/2)

Recall 5
f(t, T) = —8—Tln( (t, T)).

Exchanging order of differentiation yields

=d {In ))] :f%dln(P(t, 7).
Applying Ito’s lemma (to dIn (P(t, T))) with bond price dynamics yields
din(P(t,T)) = d(PP((: TT))) op(t, T);UP(“ T) g
_ [r(t) _ O'P(t, T);UP(t, T):l . dt — O'P(t, T)T . dW(t)

Differentiating d In (P(t, T)) w.r.t. T gives

0 op(t, T)]Top(t, T)-dt+ [ 0 op(t, T)r~dW(t).

df(t, T) = [ar T’



We prove the forward rate dynamics (2/2)

df(t, T) = |:887_O'P(t, T)]T op(t, T) - dt + [aaTap(t, T)} : -dW(t).

Denote P
O'f’(t7 T) = ﬁap(t’ T)

With terminal condition op(T, T) = 0 follows integral representation

op(t, T) = / or(t, u)du.

Substituting back gives the result

dF(t,T) = of(t, T)T - /Taf(t, u)du

dt +oe(t, T) - dW(t).




It will be useful to have the dynamics under the forward
measure as well

Lemma (Brownian motion in T-forward measure)

Consider our HJM framework with Brownian motion W(t) under the
risk-neutral measure and

dP(t, T)

Ty — (D) dt—op(t.T) - dW(b).

Under the T-forward measure the bond price dynamics are

cf((:’—;_)) - [I’(t) + UP(t’ T)TJP(ta T)] -dt — JP(t’ T)—r : dWT(t)

with WT(t) a Brownian motion (under the T-forward measure).

Moreover,
dWT(t) = op(t, T) - dt + dW(t).



T-forward measure dynamics can be shown by Ito's lemma

(1/2)

Abbrev. deflated bond prices Y (t) = Z4:7), then
P = —op(t, T)TdW/(1).

Now consider 1/Y(t) and apply Ito’s lemma

(dY(t))2 _dY(1)
Y(t) Y(t)

1\ dv(r) 1 1
d (v(w) =~ ap * v Y OF = v

_ $%5[0,;(15 ) op(t, T)dt + op(t, T)TdW(1)]

op(t, T)"
Y(t)

[op(t, T)dt + dW/(t)].



T-forward measure dynamics can be shown by Ito's lemma

(2/2)

However, 1/Y(t) = B(t)/P(t, T) is a martingale in T-forward measure

and d( )must be drift-less in T-forward measure.

Y (1)
Define W T(t) with

dWT(t) = op(t, T)dt + dW(t).
Then WT(t) must be a Brownian motion in the T-forward measure.

Substituting dW/(t) in the risk-neutral bond price dynamics finally gives
the dynamics under T-forward measure.
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HJM Modelling Framework

Short Rate and Markov Property



Short rate can be derived from forward rate dynamics

Corollary (Short rate specification)
In our HIM framework the short rate becomes

r(t) = f(t,t)
=f(0,t)+

/Otaf(u7 )7 [/utaf(u,s)ds] du + /Otaf(u, 0T . dW(u).

Proof.

Follows directly from forward rate dynamics and integration from 0 to
t. O

> Note that integrand in diffusion term D(t) = fot or(u,t)" - dW(u)
depends on t.
> In general, D(t) is not a martingale.

» In general, r(t) is not Markovian unless volatility o¢(t, T) is suitably
restricted.



We analyse diffusion term in detail

D(#) :/0 o, )T - dW(u).

It follows
t T
D(T):/ or(u, T)T-dvv(u)+/ or(u, T)T - dW(u)
0 ; t
= D(t)+/ or(u, T) - dW(u)
+/Otaf(u T dW(u) - /taf(u 0T - dW(u)
T
:D(t)+/ or(u, T)" /[O’fUT*O'fUt] - dW (u).
» How is EQ [D(T) | D(t)] (knowing only last state) related to
EQ[D(T) | F:] (knowing full history)?

» If D is Markovian then EC[D(T) | D(t)] = EC[D(T)| F]
(neccessary condition).



Compare E2[D(T)| D(t)] and ER[D(T) | F4] (1/2)

EC[D(T)|F] =E®

D(t) —|—/ or(u, T)TdW(u) |.7:t‘|

+EC {/Ot [o7(u, T) — o¢(u, )] dW(u) Ift}

=D(t)+0+ '/0 [o6(u, T) — of(u, t)] dW(u).

1(t,T)

;
EC[D(T)| D(t)] = E® D(t)+/t o(u, T)"dW(u) | D(t)

+EC Uot [oe(u, T) — o (u, £)] T dW(u) | D(t)}

= 0(e) + 0+ 5% | [ fos(u T) = (a0 () D(1)]



Compare E2[D(T)| D(t)] and ER[D(T) | F4] (2/2)

EQ[D(T)|F:] = D(t) + ./c; [o6(u, T) — of(u, t)] " dW (u).

I(t,T)
ot

EQ[D(T)|D(t)] = D(t) + E" M [o6(u, T) — o¢(u, )] dW(u)| D(t)] .

» EQ[D(T)|D(t)] = EQ[D(T)|F:] only if I(t, T) is non-random or
deterministic function of D(t).



An important separability condition makes D(t) Markovian
Assume
o¢(t, T) = g(t) - h(T)

with g(t) (scalar) process adapted to F; and h(T) (scalar) deterministic
and differentiable function.
Then

t

.
D(T) = ; g(U)'h(T)~dW(U)+/t g(u) - h(T) - dW(u)

-
= h((7t-)) -D(t) + h(T) - /t g(u) - dW(u).

>

Thus
h(T)

E [D(T) | D(e)] = B2 [D(T) | 7] = e

- D(t).

Moreover

d(D(t)) = -D(t) - dt + g(t) - h(t) - dW(t).
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HJM Modelling Framework

Seperable HJM Dynamics



We describe a very general but still tractable class of
models

> We give a general description of a class of term structure models.

> Typically, these models are called Cheyette-type or quasi-Gaussian
models; also associated with work by Ritchken and
Sankarasubramanian (1995).

> Particular parameter choices will specialise general model to classical
model (e.g. Hull-White model).

> More complex parameter choices yield powerful model instances for
complex interest rate derivatives.

Quasi-Gaussian models are important models in the industry.



Separable forward rate volatility

Definition (Separable forward rate volatility)

The forward rate volatility o¢(t, T) of an HIJM model is considered of
separable form if

or(t, T) = g(t)h(T)
for a matrix-valued process g(t) = g(t,w) € R?*? adapted to F; and a
vector-valued deterministic function h(T) € R¢.
Corollary

For a separable forward rate volatility o¢(t, T) = g(t)h(T) the bond
price volatility op(t, T) becomes

op(t, T):g(t)/t h(u)du.



Forward rate representation follows directly
Lemma

For a separable forward rate volatility o¢(t, T) = g(t)h(T) the forward
rate becomes

f(t, T)=f(0, T)+

and

H(t) = F(0, )+h(t) T [ /0 Ca(5) &(s) ( / t h(u)du) ds + /0 tg(s)TdW(s)} .

Proof.

Follows directly from definition. O



We need to introduce new state variables to derive
Markovian representation of short rate

Re-write h(t)T = 1" H(t) and

r(t) = (0, t)+1" H(t) Uotg(sfg(s) (/

with

1 hi(t) O 0
1= : and H(t) = diag (h(t)) = 0o - 0 .
1 0 0 hd(t)

Introduce vector of state variables x(t) with

«(t) = H(t) { /0 a(5)&(s) ( / t h(u)du) ds + /O tg(s)TdW(s)] .

t

h(u)du) ds + /0 tg(s)TdW(s)]



We derive the dynamics of the short rate

Theorem (Separable HJM short rate dynamics)

In an HJM model with separable volatility the short rate is given by
r(t) = £(0,t) + 17 x(t). The vector of state variables x(t) evolves
according to x(0) = 0 and

dx(t) = [y(£)1 — x(t)x(t)] dt + H(t)g(t) "dW(t)

with symmetric matrix of auxilliary variables y(t) as
t
70)= 1o ([ e a0)08 ) o)

and diagonal matrix of mean reversion parameters x(t) as

w(t) = - P8 ey




Proof follows straight forward via differentiation (1/3)

We have
x(t) = H(t) {/0 g(s)"g(s) (/ h(u)du) ds+/0 g(s)TdW(s)] .
G(t)
dx(t) = H'(t) - G(t) - dt+H(t) dG(t)

(
_ H’(

) G(
t)- H(t) H(t)- G(t) - dt + H(t) - dG(t)
—x(t

) x(t) - dt + H(t) - dG(t).



Proof follows straight forward via differentiation (2/3)

dx(t) = —x(t) - x(t) - dt + H(t) - dG(1),
G(t) = /0 " a(5)T&(s) < / h(u)du) ds + /0 g(s)T dW(s).

Leibnitz rule yields
dG(t) = _g(t)Tg(t) </tt h(u)du) + /Otg(s)Tg(s)jt (/st h(u)du) ds} dt
—l:g(t)TdW(t)

= _0+ /Otg(s)Tg(s) ~H(t)1- ds} dt + g(t) " dW(t)

= :(/Otg(s)Tg(s)ds> H(t)l] dt + g(t) " dW(t).



Proof follows straight forward via differentiation (3/3)

Combining results gives

dx(t) = —x(t) - x(t) - dt + H(t) - dG(t)

_ [H(t) ( /0 t g(s)Tg(s)ds) H(EL — x(¢) -X(t)] dt

+H(t) - g(t) " dW(t)
= [y(t) - 1= x(t) - x(t)] dt + H(t) - g(t) "dW(2).

> Note that dx(t) depends on accumulated previous volatility via
Iy g(s)Tg(s)ds.

> x(t ) is Markowan only if volatility function g(t) is deterministic.

» In general, short rate dynamics can be ammended by dynamics of

y(t).



Short rate dynamics can be written in terms of state and
auxilliary variables (1/2)

Corollary (Augmented short rate dynamics)

In an HJM model with separable volatility the short rate is given via
r(t) = £(0,t) + 1" x(t) with

dx(t) = [y(t) -1 — x(t) - x(t)] dt + o, (t) " dW(t),
dy(t) = [o(t) "o, (t) — x(t)y(t) — y(t)x(t)] dt,

and x(0) =0, y(0) =0.



Short rate dynamics can be written in terms of state and
auxilliary variables (2/2)

Proof.
Set 0,(t) = g(t)H(t) and differentiate
y(6) = H(t) (J; &(5) T g(s)ds) H(2). 0

> Model class also called Cheyette or quasi-Gaussian models.

> Typically o,(t) and x(t) are specified and o¢(t, T) is reconstructed
via
H'(t) = — x(t)H(t), H(0) =1 and
g(t) =o(t)H(t)™".



Forward rates and zero bonds can be written in terms of
state/auxilliary variables

Theorem (Forward rate and zero bond reconstruction)
In our HIM model setting we get

F(t, T) = (0, T) + 1T H(T)H(t) "} [x(t) + y(£)G(t, T)]

and
P(t, T) = ’;((%’ :)) exp {—G(t, T x(t) - %G(t, T y(8)G(t, T)}
with

(e, T) = /T H(u)H(t) " du.

> We prove the first part for f(t, T).
> And we sketch the proof for the second part for P(t, T).



We prove the first part for f(t, T) (1/2)...

1T H(T)H(t) x(t)

— (T)T [ /0 a(5)T&(s) ( / t h(u)du) ds + /0 tg(s)TdW(s)] .

1T H(T)H(t) ty(t)G(t, T)

)

— (T ( /0 tg(s)Tg(s)ds> /t " ()




We prove the first part for f(t, T) (2/2)...

/1 + /2
=h(T)"x

/Otg(s)Tg(s) (/St h(u)du) ds + (/Otg(s)Tg(s)ds> /tT hw)du}

+ h( T)T/Otg(S)TdW(s)

=h(T)"x

| &(s) a(s) t h(u)du + ' h(u)du | ds + tg(s)TdW(s)
[ ([ o | oo [ 7]
/Otg(s)Tg(s) (/ST h(u)du> ds + /Otg(s)TdW(s)]

=f(t,T)-f(0,T)

=h(T)"




.. and sketch the proof for the second part for P(t, T)

(1/2)

P(t, T) = exp { /T f(t,s)ds}

= exp {—/t (f(O, s)+ lTH(s)H(t)*1 [x(t) + y(t)G(t, s)]) ds}

_ "IDD((OO’ T)) cexp{ — (/t ITH(S)H(t)_1d5> x(t) ¢ -

G(t,T)T

exp{—/t lTH(s)H(t)_ly(t)G(t,s)ds}



. and sketch the proof for the second part for P(t, T)

2/2)

It remains to show that
T
T -1 1 T
| 1T HEHE Y O6(t. 5)ds = 5 6(e. T) H(1)6(c. T).
t
We note that both sides of above equation are zero for T = t.

The equality for T > t follows then by differentiating both sides w.r.t. T
and comparing terms.
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We take a complementary view to HJM framework and
consider direct modelling of the short rate r(t)

—0Is 3m Euribor ——6m Euribor
1.40%

1.20%
1.00%
0.80%
0.60%
0.40%
0.20%

0.00% r
0.20% \/ 10 15 20 25 30 35 40

-0.40%

Forward Rate f(0,T)

-0.60%

-0.80%
N Maturity T

short rate r(t) = f(t, t)

We model short rate of the discount curve as offset point for future rates.



Short rate suffices to specify evolution of the full yield
curve

Recall zero bond formula

P(t, T) = EV lexp {—/tTr(s)ds} |]-'t] .

» Once dynamics of r(t) are specified all zero bonds can be derived.

Libor rates (in multi-curve setting) are

1

P(t, To) -D(To, T1) — 1} o

:D(l'7 Tl)

L(t; To, T1) =ET [L(T; To, T1) | F&] = [

> With zero bonds P(t, T) (and tenor basis factors D( Ty, T1)) we can
also derive future Libor rates.

Short rate is a natural choice of state variable for modelling evolution of
interest rates.



Outline

Hull-White Model
Classical Model Derivation



Vasicek model and Ho-Lee model were the first models for
the short rate

Vasicek (1977) assumed Ornstein-Uhlenbeck process

dr(t) = k(0 — r(t)) dt + odW(t), r(0)=r
for positive constants ry, K, 0, and o.

» Model is not too different from HJM model representation.

> Constant parameters (in particular 6) limit ability to
reproduce/calibrate yield curve observed today.

Ho and Lee (1986) introduce exogenous time-dependent drift parameter,
dr(t) = 6(t)dt + odW(t).

> Drift parameter 6(t) is used to match today’s zero bonds P(0, T).
> Lack of mean reversion is considered main disadvantage.

» Model was historically used with binomial tree implementation.



Hull and White (1990) extended Vasicek model by 6(t)
Definition (Hull-White model)

In the Hull-White model the short rate evolves according to
dr(t) = [0(t) — a(t)r(t)] dt + o(t)dW(t)

with deterministic scalar functions 6(t), a(t), and o(t) > 0.
> 6(t) is mean reversion level,
> a(t) is mean reversion speed, and
> o(t) is short rate volatility.
» Original reference is J. Hull and A. White. Pricing
interest-rate-derivative securities.
The Review of Financial Studies, 3:573-592, 1990
> To simplify analytical tractability we will assume
> constant mean reversion speed a(t) = a > 0, and

> piece-wise constant short rate volatility function on a siutable time
grid {to, ey tk},

k
a(t) = Z Ly i<e<ty - Oi-
i=1



How do we calibrate the drift 6(t)?

Lemma (Hull-White drift calibration)
In the risk-neutral specification of the Hull-White model the drift term
0(t) is given by

2

0(t) = 6Tf(0 t)+ a- (0, t)+/ [ e 2t =g(y)| du.

0

Here £(0, t) = fM(0, t) is exogenously specified and assumed
continuously differentiable w.r.t. the maturity T.

Proof follows along the following steps
> Calculate r(s) via integration.
> Integrate I(t, T) ft r(s)ds and calculate distribution of /(t, T).5
> Derive §(t) such that E? [e=/®9] = P(0, T).

SWe will re-use distribution of integrated short rate I(t, T) later for options on
compounded rates.



Proof (1/4) - calculate r(s)

We show that for s > t

r(s) = e 270 [r(t) + /t (1) [0(u)du + U(U)dW(u)]] .

dr(s) = —ar(s)ds + e~ [ea(sft) [0(s)ds + o(s)dW(s)]}
= [0(s) — ar(s)] ds + o(s)dW(s).

Use notation []' (t, T) = 2 []. Set I(t, T) ft s)ds, then

I(t, T) = 2460 — 1(T). We show

I(t, T) = G(t, T)r(t) —|—/t G(u, T) [0(uv)du + o(u)dW (u)]
with

T 1— —a(T—t)
6(t. T) = / e a(u=0) gy — [e] |
t

a



Proof (2/4) - calculate distribution /(t, T)

-

I(t, T) = G(t, T)r(t) +/t G(u, T)[0(uv)du + o(u)dW(u)],

I'(t, T)=G'(t, T)r(t) + 0+ /T G'(u, T) [0(u)du + o(u)dW (u)]
=e T/ (t) + /T e T=[0(u)du + o (u)dW (u))]

_ e—a(T—t)

H(E) + /t &= [0(u)du + o (u)dW(u)]

=r(T).

Conditional on F;, integral is normally distributed, /(t, T)|z ~ N(u,c?)
with

u(t, T) = G(t, T)r( /Gur)ou)du
o(t, T)? /[GUT )] du.



Proof (3/4) - calculate forward rate
I(t, T, ~ N(u,0%) with

p(t, T) = G(t, T)r( / G(u, T)0(u)du,
P(t, T) =E2 {e"(“T |]—'t} — o H(ET)+32(T).
F(t,T) = —%ln[P(t ) = dd {M(t’ T)_%Uz(t’ T)]
T
= G'(t, T)r(t)+0+/ G'(u, T)8(u)du

_ % 0+ /tTZG(u, T)G'(u, T)a(u)zdu]

T T
= G'(t, T)r(t) +/ G'(u, T)O(u)du f/t G'(u, T)G(u, T)o(u)?du.

t



Proof (4/4) - derive drift 0(t)

T T
f(t, T) = G'(t, T)r(t)+/t G'(u, T)G(u)duf/t G'(u, T)G(u, T)o(u)?du.

Use G'(t, T) = e~ 7=t and G"(t, T) = —aG'(t, T), then
T
f'(t, T) = G"(t, T)r(t)+6(T) +/ G'(u, T)0(u)du—0

t

—/t (6"(u, T)G(u, T) + G'(u, TY] o(u)du

— O(T) — af(t, T) - /t (G (u, T (u)] du.

This finally gives the result (with t = 0)

.
O(T) = f'(t, T) + af (t, T)+/ [G'(u, T)o(u)] du

t

= (0, T) + af (0, T) + /OT {e*=‘*(T*“)a(u)}2 du.



Do we really need the drift 6(t)?

v

Risk-neutral drift representation

0(t) = %f(o, t)+a-f(0, 1)+ /Ot [e*c'*(f*")a(u) " dy

poses some obstacles.

Derivative ;2-f(0, t) may cause numerical difficulties.
In some market situations you want to have jumps in (0, t).
This is relevant in particular for the short end of OIS curve.

Fortunately, for most applications we don't need drift term.

HJM representation allows avoiding it alltogether.



Now we can also derive future zero bond prices |

Theorem (Zero bonds in Hull-White model)

In the Hull-White model future zero bond prices are given by

Pt T) = l;((%,:))'
exp {—G(t7 T)[r(t) — £(0,8)] — G(tTTV /Of [e_a(t—u)a(u)}z du}
with

T _ _
1— a(T—t)
G(t, T):/ e W=t gy = {ea]
t

» The proof is a bit technical.

> We already derived the zero bond representation

P(t, T) = B2 [ /0T | ] = e n(eTIrio(eT),



Now we can also derive future zero bond prices |l

We have from the proof of risk-neutral drift that

T T
f(t, T) = G'(t, T)r(t)+/ G'(u, T)O(u)duf/t G'(u, T)G(u, T)o?(u)du

t

and
P(t,T)=e 6(t.T)r(0)— | G(u, To(w)du+ [T 6(u, T)20? (u)du

We aim at calculating the term

- /t G(u, T)Q(u)du—l—% /t G, T)2o(u)du.



Now we can also derive future zero bond prices IlI
Consider
P(0, 1)
> <P(o, T))
=[G(0, T) = G(0,£)] r(0)

T t
n /0 G(u, T)O(u)du — /0 G(u, t)0(u)du

T t
f% [/0 G(u, T)202(u)duf/0 G(u, t)202(u)du]

=1[6(0,T) - 6(0,1)] r(0)

+/t G(u, T)H(u)du+/0 [G(u, T) — G(u,t)]0(u)du

_% Vt G(u, T)202(U)du—|—/0 [G(u, T)? — G(u, 1)?] Uz(u)d"l :



Now we can also derive future zero bond prices IV
We use G(u, T) — G(u,t) = G(t, T)G'(u, t) and re-arrange terms. Then

P(0,T)
P(0, t)

I(t, T) = log ( > + G(t, T)G'(0, t)r(0)
+ G(t, T) /t G'(u, t)0(u)du
0

~5 || (6 T)+ Glu. ] 16w, ) = 6w, 1) ()

[G(u, T)—G(u,t)+2G(u,t)]G(t, T)G'(u,t)

We use representation for forward rate f(t, T) and get

I(t, T)=lo (";((% T))> + G(t, T)f(0,1t)

_ 7/ [G(u, T) — G(u, )] G(t, T)G (u, t)o?(u)du

2 t
~ log ( P((%I))> +G(t TYF(O, ) G(tzT)/O G/ (u, £)202(u)du.



Now we can also derive future zero bond prices V

Finally, we get the result
P(t, T) _ e—G(t,T)r(t)+I(t,T)

_ PO.T) ~6enire)-ro.)- 250 [ e a(w)]'du
P(0, 1)

» Future zero coupon bonds depend on:
> today's yield curve (0, t),
> mean reversion parameter a via G(t, T), and
> short rate volatility o(t).

> We see that drift 6(t) is not required for future zero coupon bonds.



Outline

Hull-White Model

Relation to HJM Framework



Recall short rate dynamics in separable HJM model

We consider a one-factor model (d = 1)

r(t) = f(0,t) + x(t)
dx(t) = [y(t) — x(t) - x(t)] dt + o(t) - dW(t)
dy(t) = [o(£) =2 (1) - y(8)] - ot

with

H'(t) = —x(t)H(t), H(0) =1 and g(t) = H(t)"o,(t).

» How does this relate to Hull-White model with

dr(t) = [0(t) — a- r(t)] - dt + o(t) - dW(t)?



Differentiate short rate in HJM model

dr(t) = £'(0, t)dt + dx(t)
= £(0, t)dt + [y(t) — x(t)x(
t

— x(t)x(t)] dt + o (t)dW(t)
= [f'(0,£) + y(t) — x(t) (r(

t
) — f(0,t))] dt + o, (t)dW(t)

= | f(0,t) + x(t)f(0,t) + y(t) — x(t) r(t) | dt + o.(t) dW(t)
o(t) Y \U(/f;/

HJM volatility parameters become
H'(t) = —aH(t), H(0)=1 = h(t) = H(t) = e,

g(t) = o,(t)- H(t)™! = o(t)e™.



Deterministic volatility allows calculation of auxilliary
variable y(t)

We have
y'(t)=0o(t)>=2-a-y(t), y(0)=0.

Solving initial value problem yields



Hull-White model in HJM notation

In the HIJM framework the Hull-White model becomes

r(t) = £(0,t) + x(t),

dx(t) = [/ o(u)?- e 22 Wdy — a. x(t)| - dt + o(t) - dW(t),

We will use this representation of the Hull-White model for our
implementations.



This also gives HIM representation of Hull-White model
Corollary (Forward rate dynamics in Hull-White model)
In a Hull-White model the dynamics of the forward rate f(t, T) become

1— e—a(T—t)

df (t, T) = o(t)?e2(T71) dt + o(t)e 2T dW/(t).

Proof.

df(t, T)=o¢(t, T) - ~dt +o(t, T) - dW(t)

-
/ o¢(t, u)du
t

:
/t g(t)h(u)du

= g(t)h(T) dt + g(t)h(T) - dW(t)

;
= o(t)2e 2T [/ e 2W=dy | .dt + o(t)e (T8 . dW/(t).
t

1,e—a(T—t)
a




Zero bond prices may also be computed in terms of x(t)

Corollary (Zero bonds in Hull-White model)

In the Hull-White model future zero coupon bonds are

P(t,T) = I/DD((%I)) exp {G(t, T)x(t) — 7@(@;)2 /O t [e*a('-‘*%(u)}2 du}

with . (T
1— e a(T-t
G(t,T) = / (00 gy — [e] |
t

a

Proof.

Result follows either from Hull-White model zero bond formula with

x(t) = r(t) — (0, T) or from zero bond formula for the separable HIM
model with Hull-White results for G(t, T) and y(t). O



Outline

Hull-White Model

Analytical Bond Option Pricing Formulas



First we need the distribution of the state variable x(t)

We have
dx(t) = [y(t) —a-x(t)] - dt + o(t) - dW(t).
This yields for t > s

x(t) = e 2(t=9) [x(s)+/: a(u=s) (y(u)du+a(u)dW(u))].

Lemma (State variable distribution)

In the HJM version of the Hull-White model we have that under the
risk-neutral measure the state variable x(t) is normally distributed with

EQ [x(t) | Fs] = e2(t~) [x(s)—i—/st Au=s)y () u] and
Var[x(t) | Fs] = / t [efﬂf*“)a(u)}2 du.

s



Result follows directly from state variable representation
for x(t)

Proof.
Result for E [x(t) | F5] follows from martingale property of Ito integral.
Variance follows from lto isometry

t 2
Var [x(£) | F] = e~ 27(¢9) / [0 (u)]" du

_ / t et (u) ” du.

» We will have a closer Iook at
EQ [x(t) | Fs] = e=2(t=2) [ +f eu=9)y(u) du} later on.

> Note, that we can also write

Var[x(t) | Fs] = y(t) = G'(s, )y (s)-

Auxilliary variable y(t) represents the (co-)variance process of x(t).



Zero coupon bond options are important building blocks
1

Te

K
Definition (Zero coupon bond (ZCB) option)

A zero coupon bond option is defined as an option with expiry time TE,
ZCB maturity time Ty with Ty > Tg, strike K, call/put flag
¢ € {1,—1} and payoff

VZBO(Te) = [¢ (P(Te, Tm) — K)I".

> We are interested in present value VZBO(t).
» We use Tg-forward measure for valuation

VZEO(t) = P(t, Te) - E* [[6 (P(Te, Tw) = K | 7]



P(Tg, Ty) is log-normally distributed with known
parameters

» We have for the forward bond price

ETe [P(Te, Tm) | Fi] = P(t, Tm)/P(t, Te).

> From
P(t, Th) —G(Te, Tun)x(Te)— ST [ TE[e=oTe=0)(u)] du
P(T-. T _ ) EsTm E 5 .
( E, /\/l) P(t, TE)e
we get

» P(Tg, Tum) is log-normally distributed with log-normal variance
e s
V2 = Var[G(Te, Tm)x(Te) | Fe] = G(TE, TM)Z/ [e7e" 5 ()] du,
t

> we can apply Black's formula for option pricing.



ZCQO prices are given by Black's formula

Theorem (ZCO pricing formula)

The time-t price of a zero coupon bond option with expiry time Tg, ZCB
maturity time Ty with Ty > Tg, strike K, call/put flag ¢ € {1, -1}
and payoff

VZO(Te) = [¢ (P(Te, Tm) — K)I"
is given by
VZBO(t) = P(t, Tg) - Black(P(t, Twm)/P(t, Te), K, v, ¢)
with log-normal bond price variance

Te 2
v? = G(TE, TM)2/ {e_a(TE_”)J(u)} du.
t

Proof.

Result follows from log-normal distribution property. OJ



Coupon bond options are further building blocks

‘ TETCITTT‘

t T Th

Payoff at option expiry Tg

V(TE) = l(i G- P(TEg, Ti)> -K

+




Coupon bond options are options on a basket of future
cash flows
Definition (Coupon bond option (CBO))

A coupon bond option is defined as an option with expiry time Tg, future
cash flow payment times Ty,..., T, (with T; > Tg), corresponding cash
flow values Ci, ..., C,, a fixed strike price K, call/put flag ¢ € {1,—1}

and payoff
n +
VEEO(Te) = <¢> KZ GiP(TE, ﬂ)) -K )
i=1
» We cannot price CBO directly due to the basket structure.

» However, with some (not too strong) assumptions we can represent
the 'option on a basket’ as a 'basket of options'.

> We use monotonicity of bond prices (for t < T)

(%P(x(t); t.T)=—G(t, T) P(x(t):t, T) <O0.



CBO'’s are transformed via Jamshidian's trick |

W.l.o.g. set » =1 (method works for ¢ = —1 as well).
Assume underlying bond is monotone in state variable x(Tg), i.e.

8XZCP x(Te); Te, T, ZC ) Te, Th)
:—ZCG(TE, P(x(Tg); Te, T;) < 0.

» Condition is satisfied, e.g. if C; > 0.

> Small negative cash flows typically don't violate the assumption
since last cash flow C, is typically a large positive cash flow.



CBO'’s are transformed via Jamshidian's trick Il

Then find x* such that

<Z CiP(x*; Tk, T,-)) ~K=0
i=1

and set K; = P(x*; Tg, T;).
We get (using monotonicity assumption)

n + n

KZ GP(TE, T,-)> — K| = 1(Te)<x) KZ CiP(TEe, T,-)> - K
i=1 i=1

En: P(Te, T Z GK;

i=1

lz G[P(Te, Ti) — Kil Lix(1e) <x*}]

= lZC[P Te, T)) — Ki]|©

= Lin(re)<xy




CBO'’s are transformed via Jamshidian's trick IlI

This gives

ETe [ <i C;P(TE, T,))

or

i=1

.
—K ] ZC]ETE{[P(TE, ) — K"

Black’s formula

VCBO(t) _ Zn: G - V,-ZBO(t)
—Zc P(t, Te) - Black (P(t, T;)/P(t, Te), Ki, vi, d)

2
vi = G(Te, Ti)? / e Te- ”)o(u)] du.



CBQ's are prices as sum of ZBO's
Theorem (CBO pricing formula)

Consider a CBO with expiry time Tg, future cash flow payment times
Ti,..., Tn (with T; > Tg), corresponding cash flow values Ci, ..., C,,
fixed strike price K and call/put flag ¢ € {1, —1}. Assume that the
underlying bond price Y\ _, C;P(x(Tg); Te, T;) is monotonically
decreasing in the state variable x(Tg). Then the time-t price of the CBO
is

VCBO(t) _ Z Ci . \/,-ZBO(t)
i=1

where V,-ZBO(t) is the time-t price of a corresponding ZBO with strike
K; = P(x*; Tg, T;) where the break-even state x* is given by

(Z CiP(x*; Te, T,-)) ~K=0.
i=1

Proof.

Follows from derivation above. O



Outline
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General Payoff Pricing



We have another look at the expectation(s) of x(t)

> For general option pricing we also need expectation ET [x(T) | F].
» Then we can price
»+-00

V(t)=P(t, T)-ET [V(x(T); T)| Ft] = P(t, T)/ V(x; T)-pyo2(x)-dx.

J —00

» Here p, ,2(x) is the density of a normal distribution N (,u,02) with

p=ET[x(T)|F] and 0 = Var [x(T) | F4].

> Integral f:f: V(x; T) - puo02(x) - dx is typically evaluated
numerically (i.e. quadrature).

> We first calculate EQ [x(T)|F:] and then derive ET [x(T)|F:].



We calculate expectation in risk-neutral measure |

Recall
dx(t) = [y(t) — a-x(t)] - dt + o(t) - dW(t).

This yields for T >t

x(T)=e 2770

)
X(0)+ [ e (yu)du+ a(u)dvv(u))]
and

B2 [x(T)| Fe] = e_a(T_t)x(t) + /T e_a(T_“)y(u)du.

t

We get

T T u
/ e Ty (u)du :/ e—a(T—u) (/ 0(5)26_26(“_5)d5> du
t t 0
T t
:/ efa(Tfu) </ U(s)2e2a(us)d5> du
t 0
T u
+/ ea(T-v) (/ a(s)2e_2a(”_5)ds> du.
t t



We calculate expectation in risk-neutral measure Il

We analyse the integrals individually,

T t
h(t, T) = / e (T-0) (/ o(s)ze_2a(“_s)ds> du
t 0

t T
:/ </ e—a(T—u)O_(S)2e—2a(u—s)du) ds
0 t
t T
:/ 0(5)2 (/ e—a(T—u)e—Qa(u—s)du> ds
0 t

t —a(T—u) ,—2a(u—s) T
_ / o(s)? {e € ] ds
0 —a u=t

_ /t a(s)® [e—a(T—t)e—Za(t—s) _ e—a(T—T)e—2a(T—s)] ds.
0 a




We calculate expectation in risk-neutral measure Il

Exponential terms can be further simplified as

e—a(T—t) g=2a(t—s) _ ,—2a(T—s) _ ,—a(T—t) {1 _ efa(Tft)} e—2a(t=s).

This gives

—a(T— t
L(t,T) = ea(Tt)l_e—a(t)/ o(s)2e2a(t=5)gs.

a 0



We calculate expectation in risk-neutral measure 1V

For the second integral we get

T u
L(t,T) = / —a(T—v) </ o(s)2e 22l 5ds> du

—a(T u) 2 —2au s dS) du

I

/T</T AT )2 2alu s)du>d
/Tcr (/ —aT-u)em "”(”s)du> ds
J
I

T —u) o—2a(u—s)7 T
o(s [ ° ] ds

—a
T

q

73 (T—- s)ef2a(s s) 7a(T7T)ef2a(Tfs)] ds.



We calculate expectation in risk-neutral measure V

Again we simplify exponential terms

e—a(T—s) _ e—2a(T—s) _ e—a(T—s) |:1 _ e—a(T—s) )

This gives

1— efa( T—s)

.
h(t, T) = / o(s)Pe T ds.
t

In summary, we get
EQ[x(T) | Fe] = e 2T 9x(t) + h(t, T) + h(t, T)

1— —a(T—t) t
67/ o(s)2e2(t=9) ds
0

T _ o—a(T—s)
+ / J(s)ze_"(T_s)leids.
t

_ —a(T—t)
e |:X(t) + ;

a



We calculate expectation in terminal measure |

Recall change of measure
dWT(t) = dW(t) + op(t, T)dt.

We have

1—eaT-1)
op(t, T)=0(t)G(t, T) = o(t) - —

This gives
dx(t) = [y(t) —o(t)?G(t, T) — a- x(t)] - dt + o(t) - dW ' (¢)
and

x(T) = e 2(T—0).

x(t)—i—/t 9 ([y(u) — o (u)2G(u, T)] du+ o(u)dW T (u)) | .




We calculate expectation in terminal measure |l

We find that

;
ET [x(T) | Fe] = EQ [x(T) | Fe] — / o(u)?e 2T~ G(u, T)du.
t
It turns out that
—a(T—u)

T T 1_e
/ o(u)?e T~ G(u, T)du = / o(u)Pe T — _qu
t t

a
= I2(ta T)

As a result, we get
1— e—a(T—1) t
ET [xX(T)| Fe] = e—a(T—1) [X(t) + f/ 0(5)26—2a(t—s)ds
0

or more formally

ET [x(T)| Fe] = G'(t. T) [x(t) + G(t, T)y(t)]-
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Summary of Hull-White Pricing Formulas



Model Calibration

All the formulas serve the purpose of model calibration and
derivative pricing

Derivative Pricing

zero bond option (ZBO)

future zero bonds P(x(t); t, T)

coupon bond option (CBO)

expectation E7 [x(T) | F¢] and
variance Var [x(T) | Fi]

European swaption

ayoff Encmg
V(t) = P(t,T) Vx(T): T) [ 7




Bond option pricing is realised via ZBO'’s and CBQO's
Zero Bond Option (ZBO)
Zero bond with expiry Tg, maturity Ty, strike K and call/put flag ¢
VZE9(0) = P(0, Te) - Black (P(0, Tw)/P(0, Te), K, v, ¢).
1/2 = G( TE, TM)zy( TE).

Coupon Bond Option (CBO)
Coupon bond option with strike K and underlying bond

Yoy G P(Te, Th),

VCBO(t) _ Z Ci . V,-ZBO(t)
i=1

where ZBO's VZBO(t) with expiry Tg, maturity T;, and strike

!

Ki = P(x*, Tg, T;) and x* s.t.

n
> GP(x*Te, T) =K.
i=1



General derivative pricing requires state variable
expectation and variance
Zero Bonds (as building blocks for payoffs V(x(T); T))

2
P((T): T,S) = £ exp{—G(T,S)X(T)—@y(T)}.
General Derivative Pricing

+oo
V(t) = P(t, T)ET [V(x(T); T)| F:] = P(t, T)-[ V(x; T)-py,o2(x)-dx

with p,, 52(x) density of a Normal distribution N (1, 0?) with
p=E"[x(T)|F] = G'(t, T) Ix(t) + G(t, T)y(t)]

and
0? = Var[x(T) | F] = y(T) — G'(t, T)2y(t).



Fortunately, we only need a small set of model functions
for implementation

» Discount factors P(0, T) from input yield curve.

» Function G(t, T) with

1— e—a(T—1)
6(t, T) = ———.

» Function G'(t, T) with
G'(t, T)=e 2T,
> Auxilliary variable y(t) with
—2a(t—t;) —2a(t—tj_1)

y(t) = /Ot {e—a(t—u)a(u)}2 du — Z e —2ae 0-1.2

j=1

where we assume o(t) piece-wise constant on a grid
0=ty t1,...,tx = t.
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European Swaption Pricing



Model Calibration

It remains to show how Hull-Wite model is applied to
European swaptions

Derivative Pricing

zero bond option (ZBO)

future zero bonds P(x(t); t, T)

coupon bond option (CBO)

expectation E7 [x(T) | F¢] and
variance Var [x(T) | Fi]

European swaption

ayoff Erlcmg
V(t) = P(t,T) Vx(T): T) [ 7




Recall that Swaption is option to enter into a swap at a
future time

> At option exercise time Tg present value of swap is

VSwap KZT,P(TE7 ZL (TE7 — j—1+(5)7~'jP(TE7 7‘j/)

future fixed leg future float leg

> Option to enter represents the right but not the obligation to enter

swap.
> Rational market participant will exercise if swap present value is
positive, i.e.

VP (TE) = max { Vo"*P(Tg),0} .



How do we get the swaption payoff compatible to our
Hull-White model formulas?

VP(Te) = K> 7iP(Te, Ti) = Y L(Te, v, Tioa + 6)5P(Te, T)
i=1 j=1
future fixed Leg future float leg

> Fixed leg can be expressed in terms of future state variable x( Tg)
via P(x(Tg); Te, Ti)

> Float leg contains future forward Libor rates L°( Tg, 7'1-_1, 7}_1 +0)
from (future) projection curve

» However, Hull-White model only provides representation of discount
factors, i.e. P(TEg, Tj)

Wg need to quel the relation between future Libor rates
L°(Tg, Tj—1, Tj—1 + d) and discount factors P(Tg, T;).



We do have all ingredients from our deterministic

multi-curve model
Recall the definition of (future) forward Libor rate

L(Te, T, Tioa +0) = BI040 [10( Ty, Ty, iy + ) | Fre]

P(Tg, Ti 1
_P(Te, Tja) -D(T;- 1,11+5)—1—
P(TE57—j—1+5) Tj—1

(121 = T('ij_l, 7}_1 + §)) with tenor basis factor

X o Q(TE,
DT T 0 575

and discount factors Q(Tg, T) arising from credit (or funding) risk
embedded in Libor rates L%(-).
> Key assumption is that D(T;_1, Tj_1 + 9) is deterministic or
independent of Tg.
> Then

Q(0, Tj_1) _ P20, Tj-1)  P(0, Tj-1+9)
QO, Tj_1+0) P30, T_1+06) PO Ti1)

D(i_j—l’ 7-J'—17L5) =



We use basis spread model to simplify Libor coupons

» Tenor basis factor

PO(0,Tj-1) PO, Tj1+50)

Dii1=D(Ti_1, Ti_1+06) = 2 -
=1 = D(Tj1, Tjma +9) P50, T +0) PO, T4)

is calculated from today's projection curve P°(0, T) and discount
curve P(0, T).

» Further assume natural Libor payment dates and consistent year
fractions . . . B
Tj=Tia+6, 7(Tj1, T +6) =7

> Libor coupon becomes

P(Te, T; 1 ~
MDJ& —1| Z7P(Tg, T)
(TEa ) 7j

P(Te, T—1)Dj—1 — P(TE, T)).

L(Te, T—1, T)HP(Te, T;) =



We can write the float leg (1/2)

szap KZTI TE7 Z TE7 Jj— 17 J 1+6)TJ (TEa 7—1)
future fixed leg future float leg
_KZTI TEa I ZP TE7 _]1 JlfP(TEai_j)
j=1
= KZT,-P( Te, T,
i=1

P(Te, To)Do — P(Te, Tr) + zm: P(Te, Tj_1)[Dj_1 — 1]]

=KY 7iP(Te, T,
i=1

P(Te, To) — P(TE, m)—i—ZP(TE, 1) [Dj- 1—1]]




We can re-write the float leg (2/2)

Reordering terms yields

VIR (Te) = — P(Te, To) Z K-7i-P(Tg, T))
—_———

strike paid at Tp

fixed rate coupons

=Y P(Te, Tim)  [Dioa = 1+ P(Te, T)
j=1 ———
notional payment
negative spread coupons
n+m+1 _
= > G- P(Te, Ti)
k=0

with

C0:*17 Ci:K'TI'(i:la"'vn)7 Cn+j:*[Dj—171];(j:17~--,

and Cn+m+1 - 1,

and corresponding payment times Ty.

m),



Swaptions are equivalent to coupon bond options

Corollary (Equivalence between Swaption and bond option)

Consider a European Swaption with receiver/payer flag ¢ € {1,—1}
payoff

VSwpt( TE

{KZT, TE,T)—ZL[s(TE, - j71+5)7~'jP(TE, 7—1)}

Under our deterministic basis spread assumption the swaption payoff is
equal to a call/put bond option payoff

n+m+1
cBO 7
VEEO(Tg) = Z G- P(Te, Ti)

with zero strike and cash flows Cy and times Ty as elaborated above.
Moreover, if the underlying bond payoff is monotonic then

+

n+m+1
VSwpt( ) VCBO(t Z Cy - VZBO



We give some comments regarding the CBO mapping
> Note that Cy = —1 is a large negative cash flow.

> However, % [—P(TE, 7’0)] ~ —G(Tg, To) is small because Tg — Ty
is small.

» If Te = Ty, i.e. no spot offset between option expiry and swap start
time, then
> set CBO strike K = D(To, T1),

> remove first negative spread coupon C,y1 from cash flow list.

» In practice monotonicity assumption

) n+m+1 _
5[ Z Ck~P(TE,Tk)] <0
k=0

is typically no issue.

In Hull-White model calibration we will use CBO formula to match
Hull-White model prices versus Vanilla model swaption prices.



Outline

Hull-White Model

Impact of Volatility and Mean Reversion



How do the simulated paths look like?

» Model short rate volatility o calibrated to 100bp flat volatility at 5y
and 10y, mean reversion a € {—5%,0%,5%} °

a=-0.05 a=0.00 a=0.05

~0.06 -0.06 -0.06
[

Simulation time t simulation time t Simulation time t

> Higher mean reversion yields more forward volatility.

6Zero mean reversion is effectively approximated via a = 1bp. This does not
change the overall behavior and avoids special treatment in formulas.



Forward volatility dependence on mean reversion can also

be derived analytically
Denote forward volatility as

orwd(To, T1) = \/Var[;(_l(il)To‘FTﬂ] _ \/y( T1) — i’l(z_mTZ]Py( To)

> Suppose spot volatilities opwd(0, T1) and orwd(0, To) (and thus
y(To) and y(Ty) are fixed)

> If mean reversion a increases then G'( Ty, T1) = e~ (71~ 7o) decreases

» Thus forward volatility opwd(To, T1) increases

TO = 5y, T1 = 10y, spot sigma = 100bp

120 A

110 A

Forward volatility (bp)
@ 153
o g (=}

=
3

@
S

—0.100 —0.075 —0.050 —0.025 0.000 0.025 0.050 0.075 0.100
Mean reversion t



Which kind of curves can we simulate with Hull-White
model?

> Models use flat short rate volatility ¢ = 100bp and mean reversion
a€{-5%,0%,5%} ’

a=-0.05 a=0.05

0.40

020

Forward rate f(t,T)
Forward rate f(t,T)
Forward rate f(t,T)

;
B} //

3 10 20 30 0 10 20 30 [ 10 20 30
Maturity T Maturity T Maturity T

> Model works with negative mean reversion - however, yield curves
are exploding

7Zero mean reversion is effectively approximated via a = 1bp. This does not
change the overall behavior and avoids special treatment in formulas.



What are relevant properties of a model for option pricing?

» Vanilla models require input (ATM volatility) parameters for
expiry-tenor-pairs.
> Which shape of ATM volatilities for expiry-tenor-pairs are predicted
by Hull-White model?

» SABR model allows modelling of volatility smile.

> Which shapes of volatility smile can be modelled with Hull-White
model?
> How does the smile change if we change the model parameters?

> We aim at applying the Hull-White model to price Bermudan
swaptions.

> How do the model parameters impact prices of exotic derivatives?

For now we focus on model-implied volatilities (ATM and smile). The
impact of model parameters on Bermudans is analysed later.



Model properties for option pricing are assessed by
analysing model-implied volatilities

Model-implied normal volatility

Consider a swaption with expiry/start/end-dates Tg/To/ T, and strike
rate K. For a given Hull-White model the model-implied normal volatility
is calculated as

o(To, Ty, K) = Bachelier * (S(t), K, VBO(t)/An(t),¢) /\/ Te — t.

Here, S(t) and An(t) are the forward swap rate and annuity of the
underlying swap with start/end-date To/T,. VBO(t) is the Hull-White
model price of a coupon bond option equivalent to the input swaption.



Which shapes of volatility smile can be modelled and how
does the smile change if we change the model parameters?

> Models use flat short rate volatility o € {50bp, 75bp, 100bp, 125bp}
and mean reversion a € {—5%,0%,5%}:

250
— a=0.05, sigma_r=0.005
140 140
[y 3
— a=0.05, sigmar=0. mzs
200 120 120
E; S DR
> > 100 2 100
5150 5 =
s s R
- IR —_—— T 80
E E E
5 5 5
H 2 2 N —
ki 2 g
2 100 3 60 5 60
E E E
£ = = I
T ] 3
£ % H
2 2 40 2 w0
[
50
—— 2=-0.05, sigma_r=0.005 —— 2=0.0001, sigma_r=0.005
0.05, sigma_r=0.0075 20 0.0 20
0.05, sigma_r=0.01
— 2=-0.05, sigma_r=0.0125 — 20,0001 sigma s r—oous
o 0 0
~003 -0.02 -0,01 000 001 002 0.03 ~0,03 -0.02 0,01 0.00 001 002 0.03 ~0.03 -0.02 0,01 000 001 002 003
Strike (relative to ATM) strike (relative to ATM) Strike (relative to ATM)

» We can only model flat smile - this is a major model limitation!

> Model-implied volatility decreases if mean reversion increases.



Which shape of ATM volatilities for expiry-tenor-pairs are
predicted by Hull-White model?

» Models use flat short rate volatility o - calibrated to 10y-10y
swaption with 100bp volatility

> Mean reversion a € {—5%,0%,5%}:

a=0.00

v |3 3 g
1402 1402 1402

¥ z z z
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» Mean reversion impacts slope of ATM volatilities in expiry and swap
term dimension.

o
iy 5



Outline

Special Topic: Options on Overnight Rates



Recall overnight index swap (OIS) coupon rate calculation

compounding leg

>
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| | | | | | I
I

| | | |

-+

I
I
I
I
I
I
overnight rates L; = L(tj_1;tj_1, t;) !
I
I
I
| |
to=To t t 7= 1d te—1 ty = Tl‘



The backward-looking compounded rate is composed of
individual overnight rates

> Assume overnight index rate L; = L(t;_1; t;1, t;) is a credit-risk free
simple compounded rate.

» Compounded rate C; (for a period [Ty, T1]) is payed at Ty and
specified as

k
Cl = { [H(l + L,'T,')

i=1

1
- 1} 7(To, T1)

» Crucial part from modeling perspective is compounding factor

k

,-131 1+ Limy) = HP(t, el

> Tower-law yields




Outline

Special Topic: Options on Overnight Rates
Overnight Rate Coupons in Hull-White Model



For pricing options on compounded rates we need the
terminal distribution of the compounding factor

Use Hull-White model representation of zero bonds

P(ti—1,t;) = I'm exp {_G(tila ti)x(ti—1) — %G(tifla ti)2Y(ti1)} ;

1 —exp{—a(ti— ti_
G(tifl,t,') _ p{ a( 1)}’

ti—1
y(tifl) = / U(u)2 . e_2a(ti71—u)du.
t

Compounding factor becomes

l 1  P(t, To)

P(t,'_l, t,') o P(t, Tl)

Xp {Z G(f,',l, t;)X(t,;l) + %G(t,',l, t,')zy(t,'l)} .

i=1 i=1

Variance of compounding factor is driven by stochastic term

Sy Gt tr)x(tio1).



We write all x(t;_1) in terms of x(Ty) plus individual Ito
integrals
We have in Hull-White model and risk-neutral measure

x(ti_q) = e~ ?t-17To) |:X( To) + /T:il =T [y (u)du + o(u)dW(u)]] :

Abbreviate dp(u) = y(u)du + o(u)dW (u) (to simplify notation). Then
K

Z G(ti—1, ti)x(ti-1)
i—1
p

Y 6(60,) {e‘a(t”_T") [X(To) +/t"1 ea(U—To)dp(U)]}

i=1 To
K

= X( TO) Z G(ti—l, t,')e_a(ti—l—To)
i=1

ti—1

k
36t 1, 1) / et gp(u).

i=1 To

We analyse above two parts individually.



First we calculate the scaling factor for x( Tp)

We have

1 _ efa(t,-ft,-,l)

G(tj_q, t;)e 217 To) — e2ti-1=To) — G( Ty, t;)—G(To, ti_1).

a
This yields the telescopic sum
k k
> Gty t)e T = N " G(To, t7) — G(To, ti1) = G(To, Th).
i=1 i=1

And we have

k
x(To) > G(tiq, t;)e 21770 = G(To, T1)x(To).
i=1



Second we calculate the sum of Ito integrals (1/2)
We split integration and re-order sums

k ti_

Z G(t,',l, t,') e_a(t"*l_”)dp(u)

i=1 To
k i—1 t

-y G(t,;l,t,-)Z/ et (1)
i=1 j=1Yt-1
ki1 g

=> > / G(ti-1, t5)e 1= dp(u)
i=1 j=1"4-1
k i=1 g

= Z/ (G(u, t:) — G(u, ti_1)] dp(u)
i=1 j=1"7-1

k—1 n t;
— Z Z / [G(u, t;) — G(u, ti—1)] dp(u)

j=1i=j+17t-1

:i/tj S (6w, 6) — Glu, 1)) dp(u).

J—1 j=j+1



Second we calculate the sum of Ito integrals (2/2)

Now we can use telescopic sum property again and simplify

k ti—1
Z G(ti_1, t,-)/T e (= dp(u)
= Z/t Z [G(u, t;) — G(u, ti—1)] dp(u)

i=j+1

_ Z / ~ 6(u. ;)] dp(u)
- Z G(t / _a(tf_“)dp(u).

tj



Putting things together yields the desired representation of
the compounding factor (1/3)

k

k
H P(t ggi: ;(3 exp {Z G(ti—1, t;))x(ti1) + %G(ti—l, ti)2y(t,-_1)}

t'
i= ti-1, i=1

with

K
> G(tio1, t)x(ti1) = G(To, To)x(To)+ ot )/ e~ dp(u)
i=1



Putting things together yields the desired representation of
the compounding factor (2/3)

Substituting back dp(u) = y(u)du + o(u)dW (u) gives

k
Z G(f,',l, t;)X(t,',l) = G( T(), Tl)X( To)
—_—

i=1 o

k—1

+ Z G(tj, t,,)/tj e =g (u)dW (u)

j=1 tji—1




Putting things together yields the desired representation of
the compounding factor (3/3)

k k

i=1
with
k

Z G(t,'_l, t;)X(t,'_l) = G( T(), Tl)X( To)

i=1 o

+Zq%m/ ~a6=0) g () dW/ (1)

;

k—1 t
+Zq%m/eﬂ%wa
j=1 tji—1

Stochastic Terms Iy and /; are independent Ito integrals. Thus

H’f 5 is log-normal with known variance
i=1 P(ti_1,t;) .



Log-normal variance is given by sum of variances for Ito
integrals /p and /;

We first calculate the variance

k 1
v? = Var llog (H W) | Ft

= G(To, T1)*Var [x(To) | F¢]
k—1

] 2
+) Ly 1y Gt ta)? / [e—a“f—“)a(u)} du.
t,

j=1 -1

= Var

k—1
/O+Z/j|ft]

Jj=1



Expectation is given from martingale property

Recall that expectation is also known already as

k
h= ]ETl |;IT[ P ti—1, I t‘|

(t,ITO;
P(t7T1)
P(t, ti-1)
L P(t )

I
::l

H(1+Et' [Li| Fe]7)

for t < Ty.

» Derivation can also be applied for partly fixed compounding periods
WithTo <t< Ty.



We summarise results for compounding factor terminal
distribution

Lemma (OIS compounding factor distribution)

The compounding factor Hle 1+ Lim) = Hf.;l ﬁ of an OIS
coupon in Hull-White model is log-normally distributed with expectation
(in Ty-forward measure)

k k

p=E" ll'[ 1+ Lim) ft] =@ +E" (L F]m)
i=1 i=1

and log-normal variance

v? = G(To, T1)*Var[x(To) | ]

k=1 4 2
FX sy 68 [ [0 o) da
=1 b1

Note:
> If t > Ty then Var[X(T0)|]:t] =0.

> if t < To then Var[x(To) | Fi] = ftTo [e‘a(TU_“)a(u)]2 du.



Caplets and floorlets on OIS coupons can be calculated via
Black formula

Theorem (OIS caplet and floorlet pricing)
A caplet or floorlet written on a compounded coupon rate
G = {[Hle (1+ L,'T,'):| - 1} ﬁ with coupon period [To, T1],
observation times Ty = to,...,tx = T1 and strike rate K pays at Ty the
payoff

V(T1) = 7(To, Th) [0 (G — K]

In a Hull White model the option price at t < Ty is
V(t) = P(t, T1) - Black(p, 1+ 7(To, T1)K, v, ¢)
with i =[], (1 + E¥ [L; | F{] ;) and

v? = G(To, T1)?Var[x(To) | Fi]
k—1

£ 2
FX Ly 66,6 [ [0 0] da
tj—1

j=1 7



Caplet and floorlet pricing formula follows directly from
earlier derivations

Proof.
We abbreviate 7 = 7( Ty, T1) and re-write the payoff as

K +

V(T) = [6(rC —7K)]" = [qs ([H (1+ Lym)

i=1

- (1+7‘K)>

Consequently, we can view it as an option on the compounding factor
Hle (14 L;7;) with strike 1 4 7(To, T1)K. Using T;-forward measure
yields the present value

+

V(t)=P(t, T;)-E" | Fe

k
b (lH (1+ L)

i=1

-1 +TK)>

We established earlier that the compounding factor Hf.;l (1+Li7)is
log-normally distributed with expectation p and log-normal variance v
as stated in the theorem. Thus we can apply Black's formula for call and
put option pricing. ]

2
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Special Topic: Options on Overnight Rates

Continuous Rate Approximation for OIS Options



In practice, the discrete compounding factor Hf;l (1+ Li7y)
may be approximated to simplify valuation formulas

Typically, the compounding period t;_; to t; for an overnight rate L; is
small: one day (or two/three days for holidays/weekends).

We use the short rate r(t), martingale property of bank account in
ti-forward measure and approximate

1 b
1+ Limi==—— =E" |ex / r(u)du p | Fe_
P(ti-1,t) [ p{ tioa () } |7 11
ti
A exp / r(u)du 3 .
ti—1

This yields continuous compounding factor approximation



Approximate option payoff is formulated using continuous

compounding factor
(Approximate) OIS caplet payoff is

T
[exp {/To r(u)du} —[1+7(To, T1)K]

As before we have for t < Ty

—E" -ex 7-lru u

W=E p{/T ()d}m]

_ET T lexp{/-r1 r(u)du} |.7'_T0] |}-t]
To

:]ETI -;| — P(t7 TO)
|P(To. T2) '] P(t, Ty)

+

What is the distribution of continuous compounding factor

exp {chl r(u)du}?



We already know I( Ty, T1) = ,[‘TTol r(u)du from drift
calculation for classical Hull White model

From the proof of Lemma lem:HW-Drift-Calibration(p. 268) we have

Ty
I(To, Tl) = /—,— r(u)du
0 .
= G(To, T1)r(To) +/T G(u, T1) [0(u) + o(u)dW(u)].
T
= G(To, T1) [f(0, To) + x(To)] —|—/T G(u, T1) [0(u) + o(u)dW(u)].

This yields
> Integrated short rate /( To, T1) is normally distributed, thus
exp{/(To, T1)} is log-normal.
» Variance of /( Ty, T1) can be calculated via lto isometry

T

7% = Var[I(To, T1) | Fi] = G(To, T1)*Var [x(To) |.7:t]—|—/ 1 [G(u, T)o(u)]” du.

To



With continuous rate approximation compounded rate
caplet can also be priced via Black formula

Corollary

With continuous rate approximation Hf;l (1+ Li7;) =~ exp {J‘Tcl r(u)du}
Theorem p.345 (thm:Qis-caplet-florlet-pricing) remains valid with the
adjustment that log-variance 12 is replaced by 7% with

T
72 = G(To, T1)? Var[x(To) | ] +/ - [G(u, T)o(u)]* du.



How do log-variance v and 7> compare? (1/2)

We have (daily compounding)

v? = G(Ty, T1)*Var [x(To) | Fi]
k—1

tj 2
+Z]l{t§tj_1}G(tj,t,,)2/ [e#5=9(u)] "
j=1 -1
k—1
~ G(To, T1)?Var [x(To) | Fel + > Liecy 1y Gt ta) 0 (8) (8 — tj-1)
j=1

versus (continuous compounding)
Ty

7 = G(To, T1)*Var [x(To) | F] +/ o [G(u, T)o(u)]* du.



How do log-variance v and 7> compare? (2/2)

k—1
v~ G(To, Ty)?Var [x(To) | Fel + ) Tgesy 3 Gt 1) 0(5)* (4 — 1)
Jj=1
Tx
172 = G(T07 T1)2Var [X( To) |ft] +/ [G(U, T)CT(U)]2 du.
max{t,To}

> Variance from t to Ty, G(To, T1)*Var[x(To) | F¢], coincides in both
approaches

» Variance during compounding period from Ty to T; differs slightly
between approaches

Log-variance v? (daily compounding) can be viewed as numerical
integration (or quadrature) scheme for 72 (continuous compounding).



Outline

Special Topic: Options on Overnight Rates

Vanilla Models for Compounded Rates



Do we really need a term structure model - like Hull White

model - to price caplets on compounded rates?
We establish a relation between standard (forward-looking) Libor rates
and compounded (backward-looking) rates.
» Standard Libor rate with fixing time T, start time Ty and end time
Ty (no tenor basis) is

P(Ta TO) 1
L(T, Ty, T1) = -1 .
o) [P(T, 7) } (To. T0)
» We can define forward Libor rate L(t, Tg, T1) which lives for t prior
to T.

» We have martingale property of forward Libor rates L(t, To, T1) for
t < T and well understood Vanilla models

dL(t,) =or(t) - dW(t)

(e.g. Normal model, shifted SABR model, ... - depending on choice
of UL(t)).

How can we extend Libor rate models to compounded rates

G = { [T L+ Lm)| — 1} 2ty



We generalise the definition of forward Libor rates to

capture backward-looking compounded rates
Use continuous rate approximation for overnight rate,
1+ Lim; ~ exp {f: . r(u)du}. This yields

i
i—

T 1
G = {exp {/TO r(u)du} - 1} T T

Define generalised forward rate

P(t, T
1 [PEZ,T(B - 1} t<To
R(t) = — exp ‘ r(u)du .
) 7(To. Th) {F{(T;’Tl) }—1 To<t<T

> R(t) is a martingale in T;-forward measure (by construction).

> R(t) coincides with standard forward Libor rate L(t, To, T1) for all ¢
until fixing time T.

» R(Ti) is equal to compounded rate .



Now we can specify a Vanilla model for the generalised
forward rate

We specify a Vanilla model for the generalised forward rate as

dR(t) = og(t) - dW/(t).
Here, W(t) is a Brownian motion in T;-forward measure and og(t) is an
adapted volatility process.

How can we specify volatility og(t)?

For t < T R(t) = L(t, To, T1), thus also dR(t) = dL(t,).
» We use standard Libor rate volatility og(t) = o(t) for t < T.

» But what can we do for To <t < T77?



We need to take into account that between Ty and T;
more and more overnight rates get fixed

> At observation time t — T; we get that r(u), with u < t in
C]_ = {eXp {f'l-',(;l r(u)du} — 1} ﬁ is deterministic.
> Volatility of coupon decreases to zero as t — Tj.

Assume linear decay of volatility of generalised forward rates,

T, —t
T.— T

or(t) = o(t), To<t<T.

For backbone volatility o(t) we can use same type of model as for Libor
volatility o (t).



Let's have a look at a simple example Vanilla model with
normal dynamics and constant volatility

T —t
"Ti—To

dR(t) = min{l }~U~dW(t).

» Final rate R(T;) = G is normally distributed. Option on C; can be
priced with Bachelier formula

> Integrated variance of C; at observation (pricing) time t < Ty

becomes
n T, —t 2
2 . 1
v = mins 1, —— % -o| dt
/t [ { T — To} }

1
:0'2'(To—t)—|-§0'2(T1—T0)~

> Analogous derivation holds for shifted Log-normal model for R(t)

» Compare with integrated variance in Hull-White model for mean
reversion a — 0!
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Summary Options on Compounded Rates



We can re-use Vanilla and term structure models to price
caps and floors on compounded rate coupons

» Compounded overnight rate coupon rates are

i 1 T 1
G = { Llj[l(l-l- L) — 1} - {exp{/T0 r(u)du} — 1} -

» Terminal distribution of C; and caplets/floorlets on C; can be
calculated using Hull-White model

> A generalisation of Libor forward rates to the compounding period

To to Ty yields generalised forward rates R(t) for which we can
specify Vanilla models

Literature:

> A. Lyashenko and F. Mercurio. Looking forward to backward-looking
rates: A modeling framework for term rates replacing libor.
https://ssrn.com/abstract=3330240, 2019

» M. Henrard. A quant perspective on ibor fallback consultation
results.

https://ssrn.com/abstract=3308766, 2019


https://ssrn.com/abstract=3330240
https://ssrn.com/abstract=3308766
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Bermudan Swaption Pricing
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Bermudan Swaptions



Let's have another look at the cancellation option

Interbank swap deal example

Pays 3% on 100mm EUR

Start date: Oct 30, 2020

End date: Oct 30, 2040

(annually, 30/360 day count, modified following, Target calendar)

Pays 6-months Euribor floating rate on 100mm EUR
Start date: Oct 30, 2020
End date: Oct 30, 2040

(semi-annually, act/360 day count, modified following, Target calendar)

Bank A may decide to early terminate deal in 10, 11, 12,. vears.



What does such a Bermudan call right mean?

To

[Bermudan cancellable swap] = [full swap] + [Bermudan option on opposite swap]




What is a Bermudan swaption?

Bermudan swaption

A Bermudan swaption is an option to enter into a Vanilla swap with fixed
rate K and final maturity T, at various exercise dates T}, T2,..., TE. If
there is only one exercise date (i.e. k = 1) then the Bermudan swaption
equals a European swaption.
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A Bermudan swaption can be priced via backward
induction - let's add some notation

continuation value

exercise payoff




First we specify the future payoff cash flows

» Choose a numeraire B(t) and corresponding cond. expectations
Ee[]=E[| F].
> Underlying payoff Uy if option is exercised

Uk
Cu 3 o 25

k
T,>Tk

=B(T§) | Y KnP(TE T)— Y LU(TE 71—1,71—1+5)?jP(T£,Tj)]

[ Ti>T¢ Ti>TE

future fixed leg minus future float leg

=B(TE) | > KnP(TE T) — [P(TE T,) — P(TE, T)]
[ Ti>T¢

- Z (TE, T-1) D(ﬁ-—lvﬁ)ﬂ]-



Then we specify the continuation value and optimal
exercise (1/2)

> Continuation value Hy(t) (T <t < TE™) represents the time-t
value of the remaining option if not exercised.

> Option becomes worthless if not exercised at last exercise date T[;‘.
Thus last continuation value Hz(TkK) = 0.

» Recall that Bermudan option gives the right but not the obligation
to enter into underlying at exercise.

> Rational agent will choose the maximum of payoff and continuation

at exercise, i.e.
Vie = max { Ux, Hk(TE) } .



Then we specify the continuation value and optimal
exercise (2/2)

Vie = max { Uk, Hk(TE) } .

>V represents the Bermudan option value at exercise Té. Thus we
also must have for the continuation value

Hi 1(TE) = Ve

» Derivative pricing formula yields

k
Hioa(Tg 1) = B(TE™Y) - Epea {I-IIE(I—;—;—)E)]

= BT By | s



We summarize the Bermudan pricing algorithm

Backward induction for Bermudan options

Consider a Bermudan option with k exercise dates TE(k=1,... k) and
underlying future payoffs with (time-T£) prices U.

Denote Hy(t) the option’s continuation value for T4 <t < T£™ and set

H; (TE) =0. Also set T2 = t (i.e. pricing time today).
K\ TE E

The option price can be derived via the recursion
Hi(TET)
B(TE™)

max { Uk+1, Hk+1( Té+1)}
BED |

Hi (TE) = B(TE) ‘B

= B(TE) By [

for k =k —1,...,0. The Bermudan option price is given by

VEBEM(1) = Hy(t) = Ho(TY).



Some more comments regarding Bermudan pricing ...

>

>
>

Recursion for Bermudan pricing can be formally derived via theory of
optimal stopping and Hamilton-Jacobi-Bellman (HJB) equation.

For more details, see Sec. 18.2.2 in Andersen/Piterbarg (2010).

For a single exercise date k = 1 we get

Ho(t) = B(t) - B {W] |

This is the general pricing formula for a European swaption (if Uy
represents a Vanilla swap).

max k+1
In principle, recursion Hy (T£) = B(T§) - Erx { 2 {Uk;(’T’-gﬁ)(TE )}]

holds for any payoffs Ux. However, computation

U = B(T§) Z Erx [);’((77——’))]
Ti>T ’

might pose additional challenges if cash flows X;(T;) are more
complex.



How do we price a Bermudan in practice?

» In principle, recursion algorithm for Hy() is straight forward.

» Computational challenge is calculating conditional expectations

max { Urs1, Higa ( TEH)} ]

Hy (TE) = B(TE) - B [ B(TET)

> Note, that this problem is an instance of the general option pricing
problem

V(T1)

B(T1)

V(To):B(TO)-IE[ |}'T0] :

We can apply general option pricing methods to roll-back the Bermudan
payoff.



Outline

Pricing Methods for Bermudans



Note that Uy, Vi and Hj depend on underlying state

continuation value

variable x( T§)
.
"

B(TL)
E L,
}

7—I 1
T_w 72 fs_l\ \r\
HO:B(t)E{ “ \Fr}

| V3 F max{Us, Hs

exercise payoff




Typically we need to discretise variables Uy, V) and Hy on
a grid of underlying state variables

Backward Backward Scheme Backward Scheme
Scheme
HTg) e~ H(Dy H(T3x) =0

H(t,x(t))<— V(Tl,xj) = max{Ul(xj),H(Tl.xj)} V(T xj) max{Uz(xJ) H(T,, xj)} V(T3 xj) max{U3(x]) H(T3 x])}

State variable x

t T, T, Ty Time T
Exercise (and intermediate) Times

Forthcomming, we discuss several methods to roll-back the payoffs.



Outline

Density Integration Methods



Outline

Density Integration Methods
General Density Integration Method



Key idea is using the conditional density function in the
Hull-White model

Recall that

V(T)
B(Ty)

V(To):B(T0)~E[ |.7-"7-0} .
We choose the Ty-maturing zero coupon bond P(t, T1) as numeraire.
Then

V(To) = P(To, T1) - E™ [V(T1) | Fr,]
“+oo
= P(x(To); To, T1) - / V(x; T1)  ppo2(x) - dx.

— 00

State variable x = x(T1) is normally distributed with known mean and
variance.



Hull-White model results yield density parameters of the
state variable x(T7)

V(To) = P(x(To); To, T1) - /:O V(x; T1) - ppo2(x) - dx.
State variable x = x(T7) is normally distributed with mean
p=E"[x(T1)| Fr,] = G'(To, Ta) [x(To) + G(To, T1)y(To)]
and variance
o? = Var [x(T1) | Fr,] = y(T1) = G'(To, T1)?y(To).
Thus

_ 1 (x —p)?
pu,O'Z(X) - \/W - exp {_ 252 }




Integral against normal density needs to be computed
numerically by quadrature methods

—eo  V27o? . 202

> We can apply general purpose quadrature rules to function

: X — 1)
0= o ]

> Select a grid [xo,...,xn] and approximate e.g. via
» Trapezoidal rule

00 : 2
V(To) = PUx(To)i To. Ty [ YD) exp{—(x 2 }dx.

+oo N
1
/_ ) f(x) - dx ~ 21: 5 [F(im1) 4 ()] (o = x-1)
> or Simpson's rule with equidistant grid (h = x; — x;—1) and even
sub-intervalls, then
+oo h
/_Oo F(x)-dx ~ 3+ | F(x0) +2 D ) +4Y )+ fm) |-

j=1 Jj=1

l N/2—1 N/2



There are some details that need to be considered - Select
your integration domain carefully

> Infinite integral is approximated by definite integral

/+Oof(x)~dxz/XNf(x)odxz~-.

—o00 X0

> Finite integration boundaries need to be chosen carefully by taking
into account variance of x(t).

» One approach is calculating variance to option expiry Ty,
62 = Var[x(T)] = y(T1) and set

Xo=—-A-0 and xy=\-6.

> Note, that E™ [x(T;)] = 0, thus we do not apply a shift to the
x-grid.



There are some details that need to be considered - Take
care of the break-even point

> Note that convergence of quadrature rules depends on smoothness
of integrand f(x).

» Recall that
f(x) = V(x) - puo(x) = max{Uk+1(x), Hii1(x; Tg“)} P02 (X).
> Max-function is not smooth at Uxy1(x) = Hip1(x; TE).

Determine x* (via interpolation of Hyy1(-) and numerical root search)
such that
k+1
Ukr1(x*) = Hia (x5 TE)

and split integration

/M f(x)~dx:/x* f(x)~dx+/+oo F(x) - dx.

x*



Can we exploit the structure of the integrand?

V(To) = Plx(Tei To, ) [ %TE) P {_(X;ﬁm} dx'

> Integral against normal distribution density can be solved more
efficiently:

1. Use Gauss—Hermite quadrature.

2. Interpolate only V/(x; Ty) by cubic spline and integrate exact.



Outline

Density Integration Methods

Gauss—Hermite Quadrature



Gauss—Hermite quadrature is an efficient integration
method for smooth integrands

» Gauss—Hermite quadrature is a particular form of Gaussian
quadrature.

» Choose a degree parameter d, and approximate

— 00

+o0 ) d
/ f(x) e~ dszWk-f(xk)
k=1

with x; (i = 1,2, ..., d) being the roots of the physicists' version of
the Hermite polynomial Hy(x) and wy are weights with

29-1dl /7

T R He AP

> Roots and weights can be obtained, e.g. via stored values and
look-up tables.



Variable transformation allows application of
Gauss—Hermite quadrature to Hull-White model integration
We get

V(6 ) (x = )’
i 2 -expl — 552 dx

1 +oo 2
= ﬁ/—oo V(V20x 4 p; T1) - e % dx

d
1
~ NG Z wi - V(V20xi + p; Ty).
k=1

Some constraints need to be considered:

> Payoff V/(-, T1) is only available on the x-grid at Ty, thus V/(-, T7)
needs to be interpolated.

> Gauss-Hermite quadrature does not take care of non-smooth payoff
at break-even state x*, thus d needs to be sufficiently large to
mitigate impact.
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Density Integration Methods

Cubic Spline Interpolation and Exact Integration



If we apply cubic spline interpolation anyway then we can
also integrate exactly

Approximate V/(-, T1) via cubic spline on the grid [xo, ... xn] as

N—-1 d
V(X, T]_) ~ C(X) = Z ]]'{XiSX<Xi+1} Z C,"k . (X — X,')k .
i=0 k=0

Then

=

—1

+oo Xi+1 d
/ V(x; T1) - puo2(x) - dx = / Z Gk (x— x,-)k Puo2(x) - dx
—oo X k=0

i

Xi+1 P
Z Cik - / (x = xi)" - pu,o2(x) - dx.

d
k=0 d

o

=
=

o

I

Thus, all we need is

Xit+1 X
ik = / (x = xi)" - pu.o2(x) - dx.

i



We transform variables to make integration easier
First we apply the variable transformation X = (x — u)/o. This yields
Ppu,02(x) = po,1(X)/o and

Xi+1 _ _ dx
iy = / (0% + 1 — i) poa(x) - &
X g

i

standard normal density
with the shifted grid points x; = (x; — ) /0.

Denote ®(-) the cumulated standard normal distribution function. Then

)—<2
o (x) = J% exp {_2} and &(x) = —x®'(x).

As a sub-step we aim at solving the integral

Xi+1
/ XK' (X) - dx.

i



We use cubic splines (d = 3) to keep formulas reasonably
simple |

It turnes out that
5ay:/waw;=¢ay
ﬁ&%:/id&ﬁi:—d&)

Fy(x) = />‘<2¢’(>‘<)d>‘< = O(x) — x - P/ (x),
aayi/#dawx:—&ﬂaywa)

This yields for /; o

Xi+1
m:/ (%) - dx = Fo(%is1) — Fo(%)



We use cubic splines (d = 3) to keep formulas reasonably
simple [l

and for /; 1

/,-71:/' o (X — %) - (%) - dx

Xi+1
=a~/ X-®(X)-dx—0-Xlio

=0 - [Fl()_(,'+1) — Fl()_(,)] — 0 - )_(,' . /,',0.



We use cubic splines (d = 3) to keep formulas reasonably
simple Il

We may proceed similarly for /;»
Xi+1 5
lin= / o? (x — %)% ¢'(x) - dx

Xi+1
= / 02 [3% - 2%% + %2 - ¥'(R) - dx
Xi

= 0‘2 [Fg()_(,'+1) — FZ()_(,)] — 202)_(,' [Fl()_<,'+1) - Fl()_(,)] + 0'2)_<,-2/,"0
= 02 [Fa(%i1) — Fa(X)] — 20%; [lia + 0 - Xi - I o] + 075 ;0

= 0'2 [F2()_<i+1) - FQ()_(,)] - 20’)?;/;71 — 0'2)_(,-2/;70



We use cubic splines (d = 3) to keep formulas reasonably
simple IV

and I,',3
Xi+1 3
lig = / o3 (x — %) '(X) - dx

Xi+1
= / o® [%3 = 3%%° + 3%7x — x| - ¥/(X) - dx
= 0> [F3(Xi11) — F3(%)] — 30°% [Fa(Xit1) — Fa(%)]
+ 303)_(,-2 [Fl()_(i-ﬁ-l) — Fl()_(,)] — 0'3)_(’-3/,',0.
Substituting terms as before yields
/,"3 = 0'3 [F3()_<,'+1) — F3()_<,)] — 30’)_<,‘ [Ii,2 + 20’)_<,‘Ii,1 + 0'2)_<,-2/,"0]
+ 30’2)_(,-2 [/,'71 +0o-X- /,'70] — 0'3)_<,-3/,"0

= 0'3 [F3()_(,'+1) - F3()_(,)] — 30’)_(,'I,'72 — 30’2)_(,-2I,'71 — 0'3)_(,-3I,',0.



Let's summarise the formulas...

We get
+oo
V(To) = P(x(To); To, T1) / (x; T1) - Puo2(x) - dx
3
~ P( (To) To, Tl ZC I,"k
i=0 k=0
with

lio = Fo(xit1) — Fo(Xi)
lii=0-[F(X1) — A&)]—o-X-lio

I,‘)2 = 0'2 [F2()_(i+1) — FQ()_(,)] — 20’)_(,'/,'71 — 0'2)_(,-21,')0

I,',3 = O’3 [F3()_(,'+1) - F3(_,')] - 30’)_(,'/,'72 — 30’2)_(,-2/,'71 - 0'3)_(,-3I,'70

and anti-derivative functions Fi(x) as before.



Integrating a cubic spline versus a normal density function
occurs in various contexts of pricing methods

» Method already yields good accuracy for smaller number of grid
points.

> For larger number of grid points accuracy benefit compared to e.g.
Simpson integration seems not too much.

> Either way, use special treatment of break-even point x*.

» Computational effort can become significant for larger number of
grid points.

> Bermudan pricing requires N? evaluations of ®(-) and ®’(-) per
exercise.



Outline

PDE and Finite Differences



PDE methods for finance and pricing are extensively
studied in the literature

» We present the basic principles and some aspects relevant for
Bermudan bond option pricing.

> Further reading:

> L. Andersen and V. Piterbarg. Interest rate modelling, volume | to

111.
Atlantic Financial Press, 2010, Sec. 2.

» D. Duffy. Finite Difference Methods in Financial Engineering.
Wiley Finance, 2006



Outline

PDE and Finite Differences
Derivative Pricing PDE in Hull-White Model



We can adapt the Black-Scholes equation to our
Hull-White model setting

> Recall that state variable x(t) follows the risk-neutral dynamics
dx(t) = [y(t) — a-x(t)] dt + o(t) - dW(t).
—_—
p(t,x(t))
> Consider an option with price V' = V/ (&, x(t)), option expiry time T
and payoff V (T, x(T)) = g (x(T)).

» Derivative pricing formula yields that discounted option price is a
martingale, i.e.

d (W) — oy (t,x(t)) - dW(2).

How can we use this to derive a PDE?



Apply Ito’s Lemma to the discounted option price

We get

() ()

With d (B(t)™*) = —r(t) - B(t)™! - dt follows

d (V(;’();gt))> - th) [dV (£, x(t)) — r(t) - V(t) - dt].

Applying Ito’s Lemma to option price V/ (t, x(t)) gives
1
AV (t.x(1) = Ve dt + Vi dx(t) + 5 Vi [dx (1))

_ [vt V(6 x(8) + %vxx Lo (£ dt + Vi - o(t) - dW(E)

with partial derivatives V, = 0V (¢, x(t)) /0t, Vi = OV (t,x(t)) /Ox and
Viee = 02V (t, x(t)) /Ox2.



Combining results yields dynamics of discounted option
price

(VG0 = [ om0+ 3v o0 V]

pv (t:x(t))

av(tx(t))
Martingale property of (t(xt()t)) requires that drift vanishes. That is

+ EVXX'J(t)2 —r(t)-V=0.

pv(tx(t) = Ve + Vi (8, x(2) + 5

Substituting p (t,x(t)) = y(t) — a- x(t) and r(t) = £(0,t) + x(t) yields
pricing PDE.



We get the parabolic pricing PDE with terminal condition
Theorem (Derivative pricing PDE in Hull-White model)

Consider our Hull-White model setup and a derivative security with price
process V (t,x(t)) that pays at time T the payoff

V(T,x(T)) =g (x(T)). Further assume V (T,x(T)) has finite variance
and is attainable.

Then for t < T the option price

V(exte) = (o) w0 | LT 7

follows the PDE

o(t)?

Vi(t, x)+[y(t) — a- x]- Vi(t,x)+ Vi (t,x) = [x + £(0, t)]- V(t, x)

with terminal condition
V(T,x) = g(x).

Proof.

Follows from derivation above. O



How does this help for our Bermudan option pricing
problem?

Backward Backward Scheme Backward Scheme

; H(Dx) & T~ H(Tex) =0
Htx(0) < V(Tu %) = max{Uy (), H(T1 )} V(To0%) = max{U () H(To, )}V (Ta,25) = max{Us (), H (T3, 27)}

State variable x

t Ty T, Ty Time T
Exercise (and intermediate) Times

> We need option prices on a grid of state variables [xo, . .. xn]

Solve Hull-White option pricing PDE backwards from exercise to exercise.



Pricing PDE is typically solved via finite difference scheme
and time integration

> Use method of lines (MOL) to solve parabolic PDE:
> First discretise state space.

> Then integrate resulting system of ODEs with terminal condition in
time-direction.

> We discuss basic (or general purpose) approach to solve PDE; for a
detailed treatment see Andersen/Piterbarg (2010) or Duffy (2006).

> Some aspects may require special attention in the context of
Hull-White model:

> more problem-specific boundary discretisation,
> non-equidistant grids with finer grid around break-even state x*,

> upwinding schemes to deal with potentially dominant impact of
convection term [y(t) — a- x] - Vi(t, x) at the grid boundaries of x.
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PDE and Finite Differences

State Space Discretisation via Finite Differences



How do we discretise state space?

» PDE for V (t,x(t)) is defined on infinite domain (—o0, +00).
> We don't get explicit boundary conditions from PDE derivation.
> Thus, we require payoff-specific approximation.
> Finally, we are interested in V/ (0,0).

> We use equidistant x-grid x, ..., xy with grid size h, centered
around zero and scaled via standard deviation of x(T) at final
maturity T ,
Xx=-MA-0 and xy=A-0

with 6% = Var [x(T)] = y(T) and A ~ 5.

> Why not shift the grid by expectation E [x(T)] (as suggested in the
literature)?
> Pricing PDE is independent of pricing measure (used for derivation).
» There is no natural measure under which E [x(T)] should be

calculated.
> In T-forward measure E” [x(T)] = 0 anyway.



Differential operators in state-dimension are discretised via
central finite differences

For now leave time t continuous. We use notation V/(-, x).
For inner grid points x; with i =1,... . N —1
V(,xit1) — V(- xi-1)

VX('aXi) = 2h +O(h)2<) and

V(- xiv1) =2V xi) + V(X
VXX(',X,'): (aX+1) 512)()‘1' ( X, 1)+O(h>2<)

At the boundaries we impose condition

Vxx('7X0) = )\0 . Vx('aXO) and Vxx('axN) = /\N . Vx('aXN)~
This yields one-sided first order partial derivative approximations

2[V(x) = V(, x0)]

20V w) = V1))

VX Yy ~
(0) (2~ \why) hy

2+ oh)h and - Vi) ~



Some initial comments regarding choice of Ag y

> Often, Ao,v = 0 (also suggested in the literature).

> With Aoy = 0 we have Vi (-, %) = Vix(-,xn) =0 and

V('vxl) - \/(~,X0)

Vi, %0) = +O(h2) and

VX(-,XN) =

> However, for bond options the choice Vi (-, x0) = Vix(:,xn) =0
might be a poor approximation.

> We will discuss an alternative choice for A\g y later.



Now consider PDE for each grid point individually
Define the vector-valued function v(t) via
v(t) = [vo(t), ..., ww(t)]" = [V(t,x0), ..., V(t,xn)] T € RVHL
Then state discretisation yields for inner points x; with i =1,... . N —1,

visa(t) — viea(t) | o(t)? viea(t) — 2vi(t) + viea(t) _
2h, 2 [

b+ £(0, £)] (1)

vi (t) + [y(t) — axi

and for the boundaries

= [Xo + f(O, t)] Vo(t),

(1) + [y(t) et AOUW] 2[vi(t) - vo(1))

2 (2 + Aohy) hy
/ . U(t)2 2 [VN(t) — VNfl(t)] .
v(t) + [y(t) Xy + A= } @ Wb )b - [xn + £(0, £)] va(2).
As before, we have the terminal condition
vi(T) = g(xi)

Parabolic PDE is transformed into linear system of ODEs with terminal
condition.



It is more convenient to write system of ODEs in

matrix-vector notation (1/2)
We get

Co Uo

V(8 = M(t) - v(t) = | 1
Un—1
/N CN

with time-dependent inner components ¢;, /;, u; (i =1,...

t 2
qzz%L+M+KQQ,
o0, y(1) — ax

2h2 2h,
L _ot? y()—ax
2k 2h,

I =

~v(t)

N—1),



It is more convenient to write system of ODEs in
matrix-vector notation (2/2)

Boundary elements of M(t) become

2 [y(t) ~axo + )\Oﬂ%ﬁ}

G = CESWSLY + xo + (0, t),
2 _y(t) — axy + ANU;)Z

N = k) b +x0 + £(0, t),
2 _y(t) —axp + )\o%t)z}

RN NIV S

N :2 [y(t) —axy + )\Nﬂzﬁﬁ}

(2 — Anhy) hy
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PDE and Finite Differences

Time-integration via #-Method



Linear system of ODEs can be solved by standard methods

We have
V(t) = f(t,v(t)) = M(t) - v(t).

We demonstrate time discretisation based on #-method. Consider
equidistant time grid t = tg,...,tyy = T with step size h; and
approximation

v(tj+1) — v(t)

- ~ f (tir1 — Ohe, (1= O)v(tj41) + Ov(ty))
t

for 6 € [0,1].
> In general, approximation yields method of order O(h;).

> For § = 1, approximation yields method of order O(h?).
For our linear ODE we set v/ = v(t;), My = M(tj+1 — 0h;) and get the
scheme

S

P Mo [(1—0)vV/ ™ +6v/] .



We get a recursion for the 6-method
Rearranging terms yields
[+ heMo] v/ = [ — he (1 — 6) My] v+
If [/ + h:0Mj] is regular then we can solve for v/ via
v = [1 4 hOMg] " [1 — he (1 — 0) Mp] v/ H2.
Terminal condition is
M =[g(x0), - g(xn)]

> Unless § = 0 (Explicit Euler scheme) we need to solve a linear
equation system.

> Fortunately, matrix [/ + h:0Mj] is tri-diagonal; solution requires
O(M) operations.
» O-method is A-stable for § > %

> However, oscillations in solution may occur unless § = 1 (Implicit
Euler scheme, L-stable).



Outline

PDE and Finite Differences

Alternative Boundary Conditions for Bond Option Payoffs



Let's have another look at the boundary condition ...
We look at an example of a zero coupon bond option with payoff

V(x,T)=[P(x, T, T") = K]".

For x < 0 option is far in-the-money and V/(x, t) can be approximated

by intrinsic value V(x, t) &~ V/(x, t) with

V(x,t) = [P(x,t, T") = K] = PP(?(;,Tt;) =G T 16T _ |
This yields

%V(X, t)=—G(t, T) [V(x,t) + K]
and

? o -
ﬁV(X, t) = —G(t, T) aV(X, t)
A

Alternatively, for x > 0 option is far out-of-the-money and

o V(x,t) = —V(x,t) =0.

Ox2 Ox



We adapt approximation to our option pricing problem

> In principle, for a coupon bond underlying we could estimate
A = \(t) via option intrinsic value V/(x,t) and

A(t) = [88 V(x, t)} /% V(x,t) for % V(x,t) #0,

otherwise \(t) = 0.
> We take a more rough approach by approximating A based only on
previous solution

0? 0
AoN = [5 5 V(x, t)} /3X V(x,t)
0? 0
[8 5V (xan- 17t+ht):| / XV(X1,N71,t+ht)
i
n2 2h,

for v;’Nl - véjr,\,l72/(2hx) # 0, otherwise A\g y = 0.



It turns out that accuracy of one-sided first order
derivative approximation is of order O(h?) |

Lemma

Assume V = V/(x) is twice continuously differentiable. Moreover,
consider grid points x_1, xg, x1 wWith equal spacing

hy = x1 — X9 = xg — x_1. If there is a A\g € R such that

V”(Xo) = /\0 . V/(Xo)

then
Vi) = 2170000 o)

Proof:
Denote v; = V/(x;). We have from standard Taylor approximation

V1 — 2V0 + v
h

i—va +O(K).

V// —
(xo) 2h,

+O(h) and V'(x) =



It turns out that accuracy of one-sided first order
derivative approximation is of order O(h2) Il

From V”(xp) = A - V/(xo) follows

Vi—V_1
2hy

Vo1 —2vg + w1
h3

+0O(h?) = Xo [ + O(hﬁ)} .

Multiplying with 2h2 gives the relation
2(vig —2vg + vi) + O(hY) = Mohe (vi — v_1) + O(h2).
Reordering terms yields
(24 Nohy) vy = 4vg + (Mohx — 2) vi + O(h2).

And solving for v_; gives
V1 = [4V0 + (thx — 2) V1] / (2 + )\Ohx) + O(hi)



It turns out that accuracy of one-sided first order
derivative approximation is of order O(h?) IlI

Now, we substitute v_; in the approximation for V/(x). This gives

Vi — [[4Vo + ()\ohx — 2) Vl] / (2 + thx) + O(hi)]
2h,
(2+ Xoh) vi — [4vo + (Aohx — 2) vi] 2 3
= h h
22+ Aohy) o)+ o)
2vi —4vg + 2wy 5
= h
2@+ Aok By U
2 (Vl — Vo)

_ 2
= B toagh b T O

V'(x0) = +O(h?)

> With constraint V"(xp) = A - V/(xp) we can eliminate explicit
dependence on second derivative V"(xg) and outer grid point
V1 = V(Xfl).



It turns out that accuracy of one-sided first order
derivative approximation is of order O(h?) IV

» Analogous result can be derived for upper boundery and down-ward
approximation of first derivative.

> Resulting scheme is still second order accurate in state space
direction.



Outline

PDE and Finite Differences

Summary of PDE Pricing Method



We summarise the PDE pricing method

1. Discretise state space x on a grid [xo, ..., xy] and specify time step
size h; and 6 € [0,1].

2. Determine the terminal condition v/*! = max {U; 1, H;11} for the
current valuation step.

3. Set up discretised linear operator My of the resulting ODE system
d

7V =Mp-v.
4. Incorporate appropriate product-specific boundary conditons.
5. Set up linear system [/ + h,0My] v/ = [I — hy (1 — 0) Mg] v/ +1.

6. Solve linear system for v/ by tri-diagonal matrix solver.

7. Repeat with step 3. until next exercise date or t; = 0.



Outline

American Monte Carlo



Monte Carlo methods are widely applied in various finance
applications

» We demonstrate the basic principles for

> path integration of Ito processes
> exact simulation of Hull-White model paths

» There are many aspects that should also be considered, see e.g.

> L. Andersen and V. Piterbarg. Interest rate modelling, volume | to
1.
Atlantic Financial Press, 2010, Sec. 3.

» P. Glasserman. Monte Carlo Methods in Financial Engineering.
Springer, 2003
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American Monte Carlo
Introduction to Monte Carlo Pricing



Monte Carlo (MC) pricing is based on the Strong Law of
Large Numbers

Theorem (Strong Law of Large Numbers)

Let Y1, Ya,... be a sequence of independent identically distributed (i.i.d.)
random variables with finite expectation y < co. Then the sample mean
Y, =1%"" Y converges to ji a.s. That is

lim Y,=pup as.
n—oo
> We aim at calculating V/(t) = N(t) - EN[V(T)/N(T)|F.
» For MC pricing simulate future discounted payoffs {%(%%} Lo
) = n
> And estimate

V(t) = N(t)- izm



Keep in mind that sample mean is still a random variable
governed by central limit theorem (1/2)

Theorem (Central Limit Theorem)

Let Y1, Yo, ... be a sequence of i.i.d. random variables with finite
expectation p < oo and standard deviation o < oo. Denote the sample
mean Y, = 13" Y. Then

Yo —u
a/v/n

~45 N(0,1).

Moreover, for the variance estimator s2 = 257 | (Y; — Y,,)2 we also
have _
Y,—u
sn//n

~45 N(0,1).



Keep in mind that sample mean is still a random variable
governed by central limit theorem (2/2)

\_/n_/‘

N 5 N(O,1).

> Here, N(0,1) is the standard normal distribution.

d C
» — denotes convergence in distribution, i.e. lim,_, o Fn(x) = F(x)
for the corresponding cumulative distribution functions and all x € R

at which F(x) is continuous.

> s,/+/n is the standard error of the sample mean Y,



How do we get our samples V/(T;w;)/N(T;w;)?

1. Simulate state variables x(t) on relevant dates t:

a=0.05

riable x(t)

State v:

2. Simulate numeraire N(t) on relevant dates t:

a=0.05

3 6 8 10
Simulation time t

°
~

3. Calculate payoff V(T,x(T)) at observation/pay date T.



We need to simulate our state variables on the relevant
observation dates

Consider the general dynamics for a process given as SDE
dX(t) = p(t, X(t)) - dt + o(t, X(t)) - dW(t).
> Typically, we know initial value X(t) (t = 0).

» We need X(T) for some future time T > t.

» In Hull-White model and risk-neutral measure formulation we have

wu(t, X(t)) = y(t) —a- X(t), and, o(t,X(t))=o0o(t).

There are several standard methods to solve above SDE. We will briefly
discuss Euler method and Milstein method.



Euler method for SDEs is similar to Explicit Euler method
for ODEs

> Specify a grid of simulation times t = to, t1,...,tyy = T.

> Calculate sequence of state variables

Xir1 = Xie + pltie, Xie) (tky1 — th) + o (e, Xie) [W(twr1) — W(tk)] .

> Drift u(tg, Xx) and volatility o(tx, Xx) are evaluated at current time
t, and state Xj.

> Increment of Brownian motion W(tx1) — W(tx) is normally
distributed, i.e.

W(tk+1) — W(tk) =2k te1 — t with  Z, ~ /\/(07 1)



Milstein method refines the simulation of the diffusion
term (1/2)

> Again, specify a grid of simulation times t = tg, t1,...,ty = T.
» Calculate sequence of state variables

Xir1 = Xie + pultie, Xie) (toyr — ta) + o (e, Xie) [W(tar1) — W(tk)]

8a(tk,Xk)

+§a(tk,xk) A2 (W(ts1) = W(8)) = (ten — )]

» Drift pu(tg, Xi) and volatility o(tx, Xx) are evaluated at current time
t, and state Xj.



Milstein method refines the simulation of the diffusion
term (2/2)

> Requires calculation of derivative of volatility %J(tk,Xk) w.r.t.
state variable.

» Increment of Brownian motion W(tx11) — W(tx) is normally
distributed, i.e.

W(tk_;,_l) — W(tk) =27 Vb1 — tk with  Zx ~ /\/(07 1)

> With Ay = ty41 — ty iteration becomes

Xit1 = Xk + ﬂ(tk7Xk)Ak + J(l’k,Xk)Zk\/ YA
ad(tk,Xk)

o (ZZ = 1) Ax.

1
+ Ea(t/ﬂxk)



How can we measure convergence of the methods?

» We distinguish strong order of convergence and weak order of
convergence.

> Consider a discrete SDE solution {X,f}kM:O with X/ ~ X(t + kh),
h=Tot
M

Definition (Strong order of convergence)

The discrete solution X/, at final maturity T = t + hM converges to the
exact solution X(T) with strong order/3 if there exists a constant C such
that

E[| Xy —X(T)|] < C-h.

> Strong order of convergence focuses on convergence on the
individual paths.

» Euler method has strong order of convergence of % (given sufficient
conditions on x(-) and o(+)).

> Milstein method has strong order of convergence of 1 (given
sufficient conditions on x(-) and o(-)).



For derivative pricing we are typically interested in weak
order of convergence

We need some context for weak order of convergence

» A function f : R — R is polynomially bounded if
|f(x)] < k(1 + |x])? for constants k and g and all x.

> The set C} represents all functions that are n-times continuously
differentiable and with 1st to nth derivative polynomially bounded.

Definition (Weak order of convergence)
The discrete solution X/, at final maturity T = t + hM converges to the
exact solution X(T) with weak orderf if there exists a constant C such
that

[E[f (XB)] —E[f (X(T))]| < C-h° vfech™
for sufficiently small h.

» Think of f as a payoff function, then weak order of convergence is
related to convergence in price.

» Euler method and Milstein method can be shown to have weak order
1 convergence (given sufficient conditions on 4 and o).



Some comments regarding weak order of convergence

Error estimate
[E[f (Xi)] —E[fF(X(T))]| < C-n°

requires considerable assumptions regarding smoothness of u(-), o(-) and
test functions f(+).

> In practice payoffs are typically non-smooth at the strike.

> This limits applicability of more advanced schemes with theoretical
higher order of convergence.

> A fairly simple approach of a higher order scheme is based on
Richardson extrapolation:

> this method is also applied to ODEs,
> see Glassermann (2000), Sec. 6.2.4 for details.

» Typically, numerical testing is required to assess convergence in
practice.



The choice of pricing measure is crucial for numeraire

simulation
Consider risk-neutral measure, then

N(T) = B(T) = exp {/O r(s)ds} ~ exp {/0 [F(0, 5) + x(s)] ds}
=P(0,T) texp {/0 x(s)ds} .

Requires simulation or approximation of fOT x(s)ds.

Suppose x(tx) is simulated on a time grid {tk}kM:0 then we approximate
integral via Trapezoidal rule

-
x(tk—1) + x(tk)
ds ~ ——— (g — tx_1) -
/0 x(s)ds ; 5 (tk — tk—1)
Numeraire simulation is done in parallel to state simulation

() = gt (e e { S (o)



Alternatively, we can simulate in T-forward measure for a
fixed future time T

Select a future time 7'_sufficiently large. Then N(0) = P(0, T).
At any pay time T < T numeraire is directly available via zero coupon
bond formula

- P :I_ ’ 1 7\2
M(T) = P((T). T.T) = P& 1) ;e—cw PMT)=§G(T.TP(T),

However, T-forward measure simulation needs consistent model
formulation or change of measure.

In particular
dWT(t) = op(t,T) -dt+ dW(t)
—— ~——

B.M. in T-forward measure ZCB volatility B.M. in risk-neutral measure



Another commonly used numeraire for simulation is the

discretely compounded bank account
» Consider a grid of simulation times t = ty, t1,...,ty = T.
> Assume we start with 1 EUR at t =0, i.e. N(0) = 1.
> At each t, we take numeraire N(tx) and buy zero coupon bond
maturing at tx41. Thatis
N(t)

P(tx, ti+1)

Explicitly, define discretely compounded bank account as B(0) = 1 and

N(t) = P(t, tis1) - for t € [ti, tiga] .

tk+1

We get
_BO) ) L (Pt

d = -d =0 for t€[tx,tira]-
<P(t’ tk+1) t;;!;[t P(tk7 tk+1) P(t, tk+1) [ k k""]-]

Simulating in B-measure is equivalent to simulating in rolling
ti1-forward measure.
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Monte Carlo Simulation in Hull-White Model



Do we really need to solve the Hull-White SDE

numerically?
Recall dynamics in T-forward measure

dx(t) = [y(t) — o(t)?G(t, T) — a- x(t)] - dt + o(t) - dW T (2).
That gives
x(T) = e 2(T-0).

;
X(t)+/t e ([y(u) — o(u)?G(u, T)] du+ o(u)dW (u))| .

As a result x(T) ~ N(u,o?) (conditional on t) with
p=E"[x(T)|F]=G'(t, T)[x(t) + G(t, T)y(t)] and
o? = Var[x(T) | Fi] = y(T) = G'(t, T)y(t).

We can simulate exactly

x(T)=p+o-Z with Z~ N(0,1).



Expectation calculation via = E' [x(T) | F:] requires

carefull choice of numeraire
Consider grid of simulation times t = tg, ty,...,ty = T.
We simulate
X(tkt1) = pk + ok - Zx
with

tie = G'(tie, tign) [x(t) + Gtie, trgr)y (t)]

o = y(tis1) — G'(te, ter1)?y(tc),  and
Z, ~ N(0,1).

Grid point tx;1 must coincide with forward measure for Et%+ [-] for each
individual step k — k + 1. B
Numeraire must be discretely compounded bank account B(t) and

. B B(tx)
B(tir1) = m

Recursion for x(txy1) and B(t 1) fully specifies path simulation for
pricing.



Some comments regarding Hull-White MC simulation ...

» We could also simulate in risk-neutral measure or T-forward
measure.
> This might be advantegous if also FX or equities are
modelled /simulated.
> Requires adjustment of conditional expectation pix and numeraire
N(tx) calculation.
> Variance o2 is invariant to change of meassure in Hull-White model.

> Repeat path generation for as many paths 1,...,n as desired (or
computationally feasible).

» For Bermudan pricing we need to simulate x and N (at least) at
exercise dates T},..., TE.

» For calculation of Z, use

> pseudo-random numbers or
> Quasi-Monte Carlo sequences.

as proxies forindependent N(0,1) random variables accross time
steps and paths.



We illustrate MC pricing by means of a coupon bond

option example
Consider coupon bond option expiring at Tg with coupons C; paid at T;

(i=1,...,u, incl. strike and notional).
> Set tyg =0, t; = Tg/2 and t, = Tg (two steps for illustrative
purpose).
» Compute 2n independent N(0, 1) pseudo random numbers
z,..., 7%,
» For all paths j = 1,..., n calculate:
> i, oo and B/(t1); note i and B/(t1) are equal for all paths j since
(fO) =0,
> p0+ao z, ' _ .
> /~41 o1 and B/(t,); note now 1§ and B/(t,) depend on x/,
> x’ _,ul—l—cfl zZm,

> payoff V() = [>1, G- P(x, ta, T,)] at t, = T.
> Calculate option price (note B(0) = 1)
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Regression-based Backward Induction



Let’s return to our Bermudan option pricing problem

continuation value

Ho = B(t)E { v

exercise payoff

1
B(T})

| Vi3 = max{Us, H3
Va 1= max{ Uz, Ha




In this setting we need to calculate future conditional
expectations

> Assume we already simulated paths for state variables x,
underlyings Ui and numeraire By for all relevant dates ty.

> We need continuation values Hy defined recursively via H; = 0 and

H
H, = B.E, [max{Ué(:ll, kﬂ}} .
+

» In principle, we could use nested Monte Carlo:

%
ey

State variable x(t)
o
s
38

0 2 4 6 8 10
Simulation time t

» In practice, nested Monte Carlo is typically computationally not
feasible.



A key idea of American Monte Carlo is approximating
conditional expectation via regression

Conditional expectation

B
H, =E, | —*

max {Uk+1, Hk+1}
K+l

is a function of the path x(t) for t < t.

For non-path-dependent underlyings Uy, Hx can be written as function of
xk = x(tx), i.e.
Hk = Hk(Xk).

We aim at finding a regression operator
Ry =Ri[Y]

which we can use as proxy for H.



What do we mean by regression operator?
Denote ((w) = [G1(w), - - -, Cq(u.))]T a set of basis functions (vector of
random variables).

Let Y = Y(w) be a target random variable.

Assume we have outcomes wy, . .. ,ws with control variables
C(w1),...,¢(ws) and observations Y(w1),..., Y(ws).

A regression operator R [Y] is defined via
RY](w) =((w)' B

where the regression coefficients 3 solve linear least squares problem

— min.

¢(w1) Tﬁ Y (w1)
wn Tﬂ Y(wn)

Linear least squares system can be solved e.g. via QR factorisation or
SVD.



A basic pricing scheme is obtained by replacing conditional
expectation of future payoff by regression operator

Approximate Hy ~ Hj via H; = H; = 0 and

B

e = Ri max { Uks1, Hisr }|  for k=k—1,... 1.

k+1

> Critical piece of this methodology is (for each step k)
> choice of regression variables (1, ...,(; and
> calibration of regression operator R, with coefficients 5.
> Regression variables (1, ..., (g must be calculated based on
information up to ty.
> They must not look into the future to avoid upward bias.
> Control variables ((w1), ..., ((ws) and observations
Y (w1),. .., Y(ws) for calibration should be simulated on paths
independent from pricing.

» Using same paths for calibration and payoff simulation also
incorporates information on the future.



What are typical basis functions?

State variable approach
Set ¢; = x(tx)' "L for i =1,...,q. Typical choice is q ~ 4 (i.e.
polynomials of order 3). For multi-dimensional models we would set

G =TIy x(t)P7 with S0 pij < r.

> Very generic and easy to incorporate.

Explanatory variable approach

Identify variables y1, ... y5 relevant for the underlying option. Set basis
functions as monomials

d d
(= Hyj(tk)p“ with Zp,-,j <r.
=1 =1

» Can be chosen option-specific and incorporate information prior to
ty.

> Typical choices are co-terminal swap rates or Libor rates (observed
at ty).



Regression of the full underlying can be a bit rough - we
may restrict regression to exercise decision only

For a given path consider

B
Hk = B K max{Uk+1,Hk+1}
k+1

Bit1

[Liuen>Hen Uk + (1= Lqu > Hiny) Hi] -
Use regression to calculate 1y, , > H,,,}-
Calculate Ri+1 = Ri+1 [Uk+1 — Hi41), set Hy =0 and

Bry1

Hy []]'{Rk+1>0} Uky1 + (1 — ]]‘{Rk+1>0}) Hk+1] for k= E—l, R

» Think of 1(x,,,~0} as an exercise strategy (which might be
sub-optimal).

> This approach is sometimes considered more accurate than
regression on regression.

> For further reference, see also Longstaff/Schwartz (2001).



We summarise the American Monte Carlo method
1. Simulate n paths of state variables x{( underlyings U{; and

numeraires Bf; (j=1,...,n) for all relevant times t, (k =1,...k).
2. Set H. =0.
3. For k =k —1,...1 iterate:

3.1 Calculate control variables {C’ Gi wj)} and regression

variables Y/ = Ul — H/ for the first paths (n ~ 1n).

3.2 Calibrate regression operator Ri+1 = Riy1[Y] which gives
coefficients 3.

3.3 Calculate control variables {CJ Ci(w )}J L or remaining paths

and (for all paths)
. Blk' ) .
T )
H, = B [1{Rk+1(wj)>o} Uﬂﬂ + (1 - I{Rk+1(wj)>o}) Hk+1] :
k+1
4. Calculate discounted payoffs for the paths j = A+ 1,...n not used
for regression
y)
H = B

max {Ul, HJ}
k+1

5. Derive average V(0) = =137 . H).



Some comments regarding AMC for Bermudans in
Hull-White model

» AMC implementations can be very bespoke and problem specific.
> See literature for more details.

» More explanatory variables or too high polynomial degree for
regression may deteriorate numerical solution.

> This is particularly relevant for 1-factor models like Hull-White.
> Single state variable or co-terminal swap rate should suffice.

» AMC with Hull-White for Bermudans is not the method of choice.

> PDE and integration methods are directly applicable.
» AMC is much slower and less accurate compared to PDE and
integration.

AMC is the method of choice for high-dimensional models and/or
path-dependent products.



Part VI

Model Calibration
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Calibration Methodologies for Hull-White Model
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General Calibration Problem



What is the goal of yield curve calibration?

—ols 3m Euribor ——6m Euribor
140%

1.20%
1.00% -
0.80% -
060%

040%

i
5]
S

ard Rate f(0,T)

£ 000%
-020%
-040%

0.60% -

-0.80%

Maturity T

We aim at finding a set of yield curves that allows re-pricing a set of
market instruments.




We start with a single-curve setting example to illustrate
the general principle (1/2)

Consider Vanilla swaps as market instruments with the pricing formula
(single-curve setting, t < Tp)

Swap”(t) = [P(t, To) — P(t, T,,,)] ZRT, (t, T7)

float leg

fixed Leg

A market swap quote Rfor a T, -maturing (and spot-starting) Vanilla
swap is the fixed rate that prices the swap at par, i.e.

0 = Swap“(0) = [P(0, To) — P(0, T,,)] ZRm (0. 77)
Market(Ry)

Model[P](Rk)



We start with a single-curve setting example to illustrate
the general principle (2/2)

ng
\ 0 , = Swapk(O) = [P(Oa TO) - P(07 Tnk)] - Z RkTiP(Oa Tl) .
Market(Ry) i=1
Model[P](Rk)

We associate a calibration helper operator Hy = Hy [P] with each
market instrument which takes as input a yield curve P(0, T) and
calculates (for a market quote)

Hi [P] (R) = Model[P](Rx) — Market(Ry).



Yield curve calibration is formulated as minimisation
problem
(Single-Curve) Yield Curve Calibration Problem

For a given set of market quotes {Ry},_; , with corresponding
instruments and calibration helpers Hy [P], the yield curve calibration
problem is given by

min {|[H1 [P (Ry), - -, Hq [P] (Ry)] || -
i

> Effectively, we only need a finite set of P(0, T;).

> Without further constraints there are multiple yield curves P(0, T)
that give optimal solution

[H1 [P](Ry), ..., Hq[P](Ry)]" =0eRI.

> We need to add sensible regularisation to
> make calibration problem tractable (finite dimensional domain),
> ensure unique, accurate and sensible solution,
> allow for efficient computation.



Regularisation is achieved by discretisation and
interpolation of the yield curve

Order market quotes Ry and calibration helpers H [P] by increasing final
maturity T, (k=1,...,q) of underlying instruments.
Set

R=[Ri,....,Rg] and HI[P]=[Hi[P],..., Hq[P]].

Define a vector of yield curve parameters z = [z, . .. ,zq]T € R9 which
specify the yield curve via
P=Plz].

» Typically, zx are zero, forward rates or discount factors for maturities
Ty
» Compare with interpolation traits in QuantLib.
Specify P[z] (0, T) via interpolation/extrapolation based on curve
parameters z.

> E.g. monoton cubic spline interpolation.



We re-formulate the calibration problem in terms of model
parameters

Finite Dimensional Yield Curve Calibration Problem
The yield curve calibration problem in terms of yield curve model

parameters is given by
min [|#£ [P [2]] (Rl

where

z=[z,...,zg) , R=[Ry,...,Rq]" and H[P] = [Hs[P],..., Hq[P]].

» In general, parametrised calibration problem can be solved by
general purpose optimisation methods.

» This can be computationally expensive if number of inputs and
parameters q is large.

> We can also exploit the structure of the problem to reduce
computational complexity.



The multi-dimensional calibration problem can be reduced
to a sequence of one-dimensional calibration problems

(1/3)

Lemma

Consider our parametrised calibration problem setting. Assume a yield
curve parametrisation P [z] such that discount factors P [z] (0, T) are
continuously differentiable w.r.t. z for all maturities T, and parametrised
locally in the sense that

0
8_sz[z] (0, T)=0 for T<Tp_,.

Then the Jacobi matrix %7—[ [P[z]] (R) is of lower triangular form.



The multi-dimensional calibration problem can be reduced
to a sequence of one-dimensional calibration problems

(2/3)

Proof:
Consider a component of the Jacobi matrix

1 [P (R) = - Model[P [2]|(Ry)

d
7o) Ry - i
- % P(0, To) — P(0, T7,,) Z w1 - P(0, T)

d
- T, E:R
d/ (0 To) dZ/P(O’ ”k ko Ti- 0 T)

The largest maturity is T,,. Thus, due to local parametrisaion property,

for | > k, d‘i P(0, T,,) = 0. Same holds for maturities T; < Tp,.



The multi-dimensional calibration problem can be reduced
to a sequence of one-dimensional calibration problems

(3/3)

Consequently,
d
—Hi [P2]] (Rk) =0 for [>k
dZ/

and
* 0 ... 0
d . .
ZHIPEN(R) = 0

This concludes the proof.



Sequential yield curve calibration is also called yield curve
bootstrapping

> If there is an exact solution z such that H [P [z]] (R) = 0 then we
can find it by solving sequence of one-dimensional equations

he(zk) = Hi [P z1, - - - Zk—1,2Zk, Zk, - - J] (Rk) =0 for k=1,2,...,q.

> If there is no exact solution, we can still exploit lower triangular form
of Jacobi matrix in efficiently solving

min | H [P [2]] (R)]] -

> Local parametrisation is achieved e.g. by spline interpolation
methods that are fully specified by two neighboring points (e.g.
linear interpolation).

> Note that local parametrisations typically yield less smooth forward
rate curves than parametrisations where a change in a single
parameter impacts a broader range of discount factors.



Do we really need the restriction to local parametrisation?

> In many curve parametrisations/interpolations sensitivity
%P[Z] (0, T)issmall for T < T,

Example: Interpolated forward rates f(0, T) with cubic C2-splines
bumped by 1% at 10y:

k—1"

—f(0,T) —f(0.T) (bumped) —dP/dz_10y
6.00% 0.2

~A 0.0
5.00% - --02
0.4
3
T 4.00% 0.6
14
0.8
3.00% -1.0
-1.2
2.00% - -1.4
0 5 10 15 20 25 30
maturity T

> 10y rate bump does affect curve before 9y time point.

» However, impact is small compared to impact around 10y maturity.



We can extend the bootstrapping method to non-local
parametrisations

Iterative Bootstrapping Method
Suppose we have a calibration problem set up via

HIP[Z)] = [Ha [Pzl He [P 2]

The iterative bootstrapping solves the calibration problem H [P [z]] =0
via the following steps:

1. Set initial solution z° = [2},...22] via standard bootstrapping.

2. IfH [P [zo]] # 0 repeat the fixpoint iteration:
21 For k=1,2,...,q find z such that

hi(zk) = Ha [P [z{, i Zh 1,20y 20y ,z;_l]] (R«) =0.

2.2 Stop iteration if Hzi — zi_1” <e.

> [terative bootstrapping method usually converges in a few iterations.



Outline

Yield Curve Calibration

Market Instruments and Multi-Curve Setups



Single-curve calibration procedure is typically applied to
discount curves from OIS swaps

Recall

CompSwap(t Z —1, Tj)1iP( Z R7;P(t, T,

compounding leg fixed leg

L(t, Tj—1Tj) = [Plg?t—ni)l) - 1] ;1] (compounded OIS rate).

Compounding swap rate helper can be defined solely in terms of discount
curve P via
H[P](R) = CompSwap(0) — 0.

Single curve calibration procedure can be applied straight away.

OIS discount curves can be derived from OIS swaps via single-curve
calibration procedure.



Forward rate agreements (FRA) can be used to specify
short end of projection curves (1/2)

Market quote of FRA with start date Ty and tenor 0 is the fixed rate R
that prices the FRA at par as of today. Consider present value

1
1+ 70(t To, To +0)

FRA(t)= P(t,To) [L°(t; To, To+0) — R]

discounting to Ty payoff
discounting from Ty to To+0

Condition FRA(t) = 0 yields FRA calibration helper

HRA[PO] (R) = L°(0; To, To +0) — R
P5(07 TO) 1 1
-

=Y | = R
P3(0, To + 0)



Forward rate agreements (FRA) can be used to specify
short end of projection curves (2/2)

3
HTR [P (R) = [P‘SF()OSO%OTj—)é) - 1} %_ R

> Typical tenors ¢ are Im, 3m, 6m and 12m (corresponding to Libor
rate indices).

> Typical expiries Ty are up to 2y.

> Both, available tenors and expiries, depend on the market (or
currency).

> Note that FRA rate helper only depends on projection curve
P(S(O, TO)



Vanilla swaps are used to specify projection curves for
longer maturities
Multi-curve swap price is given by

m

Swap(t) = > L(t, Tj_1, Tj1 + 0)7P( ZRT, (t, T;)

Jj=1

float leg fixed Leg

Vanilla swap rate helper becomes

HYS [P, (P)] ( ZL(’ (0, Tj_1, T-1+0)7P(t, T}) ZRT, (0, T).
j=1
> Rate helper depends on forward curve P? via forward Libor rates
L5(O, 7—1'—17 7}—1 + 5)
> Rate helper also depends on discount curve P via discount factors
P(t, T;) and P(0, T;).
> This is reflected by notation #¥° [, (P)].

> We put dependence in parentheses (P) because usually discount
curve P is calibrated earlier already from OIS swaps.



Projection curve calibration is analogous to single curve

calibration (1/2)

> Specify prOJectlon curve parameters z° and projection curve

P5 P6 [

> Use methodologies/interpolations analogous to discount curves.

» Set up calibration problem in terms of z% via

H P[] =

HVS

IHERA [PE [26”

8 [ [2]
Wy TB 2] ()

1P [24]. (P

qvs

where calibration helpers are ordered by last cash flow date.

> Obtain a set of market quotes

R [RFRA

RFRA R

gFRA’

LR



Projection curve calibration is analogous to single curve
calibration (2/2)

st _ [R]I-:RA7 o RFRA RI/S,

vs1 T
gFRA’ ""R ]

qvs

> Solve
min [#° [P* '] .(P)] (R) |

depending on curve parametrisation via iterative bootstrapping or
multi-dimensional optimisation method.

» In principle, discount curve P and projection curve P® could also be
solved simultanously by an augmented optimisation problem

min
2,28

AP P[] (R

> However, keep in mind increased computational effort and
complexity.



Basis swaps are further instruments which are liquidely
traded and also used for curve calibration (1/2)

Tenor Basis Swap

Floating rate payments of a longer Libor tenor are exchanged against
floating rate payments of a shorter Libor tenor plus fixed spread,

TenorSwap(t) = Z Lo (¢, 7~'j_1, 7}_1 + 01)7P(t, 7N'J)
j=1

mz
=3[ T T+ 8) 4 5| P(E T)).
j=1

» For example, 01 = 6m and d, = 3m.

> Market quote is spread s (corresponding to maturity) which prices
swap at par.



Basis swaps are further instruments which are liquidely
traded and also used for curve calibration (2/2)

> Note that Libor indices are currently beeing phased out of the
market.

> Consequently, tenor basis swaps will likely become less relevant.

» In EUR the following swap instruments are quoted:
> OIS (“€STR") vs. fixed,
> 6m Euribor vs. fixed,
» 6m Euribor vs. 3m Euribor plus spread.

» EUR instruments allow for the following procedure:
> First calibrate OIS (i.e. €STR) discount curve P and 6m projection
curve P°™.
> Then use P and P®" and calibrate P3™ from quoted tenor basis
spreads.



Cross currency basis swaps reference overnight rates in two
currencies

Cross Currency Basis Swap

In a (constant notional) cross currency basis swap floating rate payments
in one currency are exchanged against floating rate payments in another
currency plus fixed spread,

XCcySwap(t) = Ny {ZE?’ [(:1] 7Pt Tj) + P(t, Tml)}

j=1

— Fx(t)Ns {i [Eff [Q?} + s} #P2(t, T)) + PA(t, ?mQ)} .

j=1

5}_1 and 61-2 are compounded overnight rates (like OIS).

N domestic currency notional, N, foreign currency notional.

Fx(t) spot FX rate CCY2 / CCY1.

At trade date t; notionals Ny and N, are exchanged at time-t4 spot
FX rate, i.e. Ny = Fx(tg)N>.

vVvyYyy



We have a look at the curves involved (1/2)

projection curve from CCY-1 OIS discount curve from CCY-1 OIS

my
XCcySwap(t) = N; § L' (t, T, T)5P (8, T) + Pt Tmy)
Jj=1

m

— Fx(t)Ns Z [2(¢, Tjmas ) + 5] #P2(e, 1) + PP(t, Tony)

T r

discount curve specific to XCCY dis-

projection curve from CCY-2 OIS counting in CCY-2

> Cross currency swaps require particular discount curves.

» Cross currency discount curves (here P?) are calibrated from quoted
cross currency swap spreads (here s).



We have a look at the curves involved (2/2)

> Theoretical background is established via Collateralised Discounting.

> For details, see e.g. M. Fujii and Y Shimada and A. Takahashi,
Collateral Posting and Choice of Collateral Currency - Implications
for Derivative Pricing and Risk Management.
https://ssrn.com/abstract=1601866.


 https://ssrn.com/abstract=1601866

In summary multi-curve calibration leads to a hierarchy of
discount and projection curves

OIS Swaps __ . |OIS (Discount) Curve |
Vanilla Swaps & Libor Projection
Basis Swaps Curves

Cross Currency

Cross Currency Swaps | i
Discount Curves




Outline

Calibration Methodologies for Hull-White Model



What are the parameters we need to calibrate in
Hull-White model?

forward rate from initial discount curve P(0, t)

{ short rate volatility from Vanilla options
r(t) = f(0,t) + x(t) l
dx(t) = Uot o(u)? - e gy — 5. x(t)] Cdt + o(t) - dW(2)
x(0) =0 I

mean reversion e.g. from other exotic option prices

> Short rate volatility o(t) mainly impacts overall variance of the rates.

> Mean reversion a impacts forward volatility (and other related
properties).

We first focus on volatility calibration (assuming mean reversion
externally specified) and then look into mean reversion calibration.



Outline

Calibration Methodologies for Hull-White Model
Volatility Calibration



Market instruments for Volatility calibration are European

swaptions
EUR ATHM Swaption Straddles - BP Volatilities (Calendar day vols)
Please call +44 (0)20 7532 3080 for further details
1y 2Y 3y 5Y 7Y 107 15Y 20Y 25Y 30Y

1M Opt | 45.3| 45.0] 48.0| 53 8] 55.3] 61.6]| 70.1] 78.6| 85.2| 88.7| 90.0]|

2M Opt 38.8| 40.9| 44.8| 48.3] 51.4| 58.6| 67.0| 76.3| 82.5| 84.5| 85.5

3M Opt 35.6] 37.3| 41.7| 46.8| 50.9| 58.3| 66.7| 75.0| 80.5| 82.5| 84.1

6M Opt 34.9| 37.7| 42.1| 46.9] 51.0| 59.3| 66.3]| 74.1| 78.7| 80.1] 81.3

9M Opt 35.4| 38.0] 43.1] 47.3| 51.5] 59.1| 66.9] 73.8| 77.5| 78.7] 79.0

1Y Opt 37.0] 40.3] 44.3| 48.1| 52.4| 59.8| 67.0| 73.2| 76.0| 77.2| 77.4

8M Opt | 41.3] 44.7| 48.0| 50.6] 55.0|] 61.6] 68.3|] 72.6| 74.8| 75.7| 76.1

2Y Opt | 46.5| 49.4| 52.6| 55.0| 58.2| 63.9| 69.8] 73.0| 74.2| 75.1] 75.5

3Y Opt 56.9] 58.8| 60.6| 62.5| 64.4| 68.3| 72.6| 73.2| 72.9| 73.4| 73.7

4Y Opt 64.1] 65.5| 66.0| 67.4| 68.6] 71.1| 73.9| 72.4| 71.5] 71.1] 71.0

5Y Opt | 68.7] 69.2] 70.0| 70.8] 71.5| 73.0| 74.7| 71.8| 70.2] 69.3] 69.0

7Y Opt 73.0] 73.3| 73.6]| 73.81 74,11 74.51 74.8] 70.1] 67.61 66.4] 66.0

0Y Opt | 73.2] 73.8] 74 EUR Vega - Normal Vol Skews

SY Oopt | 70.8] 71.2] 71 Receivers Payers

0Y Opt 67.7| 68.4] 6§ -200 -150 -100 -50 -25 ATHM +25 +50 +100 +150 +200

SY Opt 64.6]| 64.8] 641y2y 22.29|14.02| 5.40| 1.84| 40.72 0.91] 4.20]13.83|24.45

oY Opt 60.4] 60.9] 591ySy 0.20]-2.25|-2.44|-1.59] 52.79 2.29] 5.14]11.97|19.60
1y10y 0.24|-1.69|-2.09|-1.40| 67.86 | 2.10] 4.80]11.53]19.32
1y20y 13.45| 7.57| 2.33| 0.63] 76.97 0.67| 2.64| 9.62|18.89
1y30y 7.75| 4.34| 1.43| 0.46] 79.14 0.16] 1.00|] 4.59|10.15
2y2y 11.95] 6.40] 1.54| 0.14] 49.98 1.32] 3.90]11.32]19.98
2ySy -3.21|-3.26|-2.23|-1.28| 58.62 1.61] 3.52| 8.09[13.38
2y10y -3.50]-2.97]-1.83|-1.01] 70.41 1.21] 2.63] 6.04|10.10
2y20y 1.10] 0.20]-0.30|-0.28]| 75.04 0.57| 1.44| 4.09| 7.81
2y30y 4.86] 2.51] 0.58| 0.07] 76.50 0.46] 1.48] 5.08|10.29
y2y -1.06]-1.41]1-1.15]-0.70] 69.84 | 0.95] 2.14] 5.18| 8.91
5y5y -3.97]-2.93|-1.73|-0.94| 72.02 1.11] 2.39] 5.42| 9.00
Sy10y -3.73]-2.55]-1.40|-0.74] 75.23 0.84] 1.80] 4.04| 6.69
Sy20y -1.66]-1.12]-0.68|-0.38] 70.67 0.49] 1.10] 2.72| 4.85
Sy30y -1.51]-0.99]-0.61]-0.35] 69.54 | 0.47] 1.07] 2.69| 4.86
10y2y -3.45]-2.56]-1.43|-0.75] 74.34 0.83] 1.74] 3.79| 6.11
10ySy -4.90]-3.28]|-1.70|-0.87] 74.37 0.92] 1.89] 4.00| 6.33
10y10y -3.04]-1.95]-1.03|-0.54] 73.36 0.60] 1.29] 2.91| 4.89
10y20y -2.31]-1.32]-0.64]-0.33] 65.38 | 0.36] 0.78] 1.79| 3.08
10y30y -1.95]-1.17]-0.65|-0.36] 63.77 0.46] 1.02] 2.53| 4.54




For Hull-White model calibration we assume that we can
already price European swaptions at market level

> In practice, European swaption models depend on available market
data (and business case).

» If only normal ATM volatilities are available (or should be used)®
> interpolate ATM volatilities,
» assume normal model dS = odW,
> use Bachelier formula for Swaption pricing.

> |If Swaption smile data is available (in addition to ATM
prices/volatilities)

> calibrate e.g. Shifted SABR models per expiry/swap term to
available data,

> interpolate models (e.g. via SABR model parameters 3, p, v),

> make sure interpolated model fits (interplated) ATM swaption data
(e.g. calibrate SABR « individually),

> use interpolated model to price European swaption.

8Same holds for (shifted) lognormal volatilities and corresponding basic models.
But keep in mind implicit smile assumption!



How can we use European swaption prices to calibrate
Hull-White volatility?

VSwpt( TE) _

n m +
¢ {KZT,-P( Te, T) = Y L°(Te, Ta, T))%P(Te, ﬁ)H :

i=1 j=1

n+m+1 B +
VEBO(Tr) = l { Z Ce- P(Tk, Tk)}

n+m+1
VSWpt( ) VCBO Z C VZBO

VEBO(t) = P(t, Tg) - Black (P(t, T)/P(t, T), Rk, vk, 8) ,

B Te 2
vk = G(Tg, Ty)? / [e—a<TE—“>a(u)] du.
t

Price of a European swaption depends on short rate volatility o(t) from
t = 0 to swaption expiry Tg.



We can calibrate a piece-wise constant volatility to a strip
of reference European swaptions

Sort reference swaptions by expiry dates
Swpty Swpt, Swpty

t + + +
t T} T# TE

Align volatility grid to swaption expiries

Q
gz % - %
58 i
[<}
G >
‘ - —
‘ t T# Tg T¥

We set up calibration helpers

Hilo] (Vo) = VERo(e) - v

Model[o] Market(akl)

> V,SBO(t) Hull-White model price of swaption represented as coupon
bond option.

> VkSWpt (quasi-)market price of swaption obtained from Vanilla model
or implied (normal) volatility.



Calibration problem is formulated in terms of short rate

volatility values
Set

k
o(t)y=olo1,... ,O’,‘(] (t) = Z l{Té_1§f<Té} “Ok.
k=1
> Assume distinct expiry/grid dates Té for reference swaptions.
> Assume mean reversion is exogenously given.

Hull-White Volatility Calibration Problem
For a given set of market quotes (or Vanilla model prices)
{Vksw"t}k _ of reference European swaptions with corresponding

calibration helpers Hy [0 [01, . .., 0f]] the Hull-White volatility calibration
problem is given as

min
O1y--+,0

[rato] (V) oo s 1 (i)

We analyse the optimisation problem in more detail.



Multi-dimensional calibration problem can be decomposed
into sequence of one-dimensional problems

Note that for | > k

d
d_O'/Hk [0’ [0’1,...,0’;]] =0

Thus we could write

H o [o1]] = 0,
Ho [0 [o1, 02]] =

|
k=)

’H; [0’ [0'1,0'2, ‘e ,(7;]] = 0.
System of equations can be solved row-by-row (i.e. bootstrapping

method) via one-dimensional root search method.

Sequentiel Hull-White volatility calibration is analogous to yield curve
bootstrapping.



We can also formulate general optimisation problem if
short rate volatilities and reference swaptions are not
aligned

Suppose time grid 0 = ty
o(t) via g = [o1,...,04]

., t, and piece-wise constant volatility

t1,..
_zl_ 1,
o(t) =ola](t) = Z Ligi<t<t) " Ok
k=1

Denote VWPt — VISWpt, o Vq,s""pt a set of reference European

swaption prices with calibration helper
Ho 61 (Vo) = [Ha o [61) (VE™) ... Hq [o [3]] (V™)
olo 1lo o h v Helo[o 5 .
Then calibration problem becomes

min |# [o [5]] (V=) |-



The choice of reference European swaptions is critical for
model calibration - What is the usage of your model?

Global calibration to available market data
General purpose calibration for yield curve simulation or pricing of a
variety of products with same model.

> Keep in mind model properties and limitations.

» HW model cannot model smile - use more liquidly traded ATM
swaptions.

» Do not use too many reference swaptions per expiry - HW model
has only one volatility parameter per expiry.

Product-specific calibration
Price a particular exotic product while focussing on consistent pricing of
related simple products.

> Identify building blocks of exotic product - these are typically priced
on simpler models if modelled as stand-alone product.

» Calibrate HW model to prices of building blocks obtained from
simpler model.



We illustrate market volatilities and global calibration fit

Market ATM Volatilities

a
&
!Ma!ket—Model) normal volatility (bp)

Market-implied normal volatility (bp)

(Ma!ket—MBdel] normal volatility (bp)

10
15
Expir 20
'es (y y) 25
30

Lower mean reversion appears to yield slightly better global fit.

[Ma!l(et—Model) normal volatility (bp)



Building blocks of Bermudan swaption are co-terminal
European swaptions

Recall decomposition

vBem(t) = max {VkSWpt(t) lk=1,..., R} + SwitchOption(t)

where V,f"”"t(t) is price of European option to enter into swap at T£
(plus spot) with fixed maturity T,.

> European swaption prices Vks‘”pt(t) can be obtained from Vanilla
model.

» Consistent Hull-White model must produce max-European price
maxy {V,f’w”t(t) lk=1,..., E} consistent to Vanilla model.

Hull-White model for Bermudan pricing is calibrated to corresponding
co-terminal European swaptions.



20y-ncly 3% Receiver Bermudan, (Fwd-)Rates at 5%
(flat) and Implied Vols at 100bp (flat)
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Out-of-the-money option shows concave co-terminal European swaption
profile.



20y-ncly 3% Receiver Bermudan, (Fwd-)Rates at 1%
(flat) and Implied Vols at 100bp (flat)

a=-0.05

a=0.05

short rate volatility sigma(t) (bp)
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In-the-money option shows decreasing co-terminal European swaption
profile.



Outline

Calibration Methodologies for Hull-White Model

Mean Reversion Calibration



Mean reversion controls switch option value of Bermudan

swaption

Recall decomposition of Bermudan price into max-European price plus

residual switch value

vBem(t) = max { VEBO(t) |k =1,..., k} + SwitchOption(t).

> VBO(t) is the Hull-White price of the co-terminal European
swaptions reformulated as bond option.

> SwitchOption(t) is the Hull-White price of the option to postpone
exercise decision.

We get

9 \germgyy _ 9 CBO _ v, 9 .
94 VEeEM(t) = 94 mlflx{V,< (t)|k=1,... .k} + aaSW|tchOpt|on(t).



Our model calibration approach to European swaption
market prices partly eliminates mean reversion dependency

We recall

0 0 - 0
93 vEBem(t) = 55 Max { VEBO(t) [k =1,..., k} + £Switch0ption(t).
If model is calibrated to match co-terminal swaptions from market prices
Swpt
V.o then
VEBO(t) = V2P va,

Thus

9 \,cBO(, _ 9 CBO _ _
&Vk (t)=0 (Vk) and gmfx{vk (t)|k=1,...,k} =0.

Consequently,

9 Berm _ 0 . .
%v (t) = 8aSW|tchOpt|on(t).

This is an important result wich shows difference between European and
Bermudan Swaptions.



Switch option value (and Bermudan price) increase as
mean reversion increases

» 20y-ncly 3% Receiver Bermudan, (Fwd-)Rates f € {1%, 3%, 5%}
(flat) and Implied Vols at 100bp (flat):

600
— ITM, f=1%
—— ATM, f=3%

5001 — oM, f=5%

8
5]

Switch Option value
M
g &

100 4

0 T T T T T
-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12
Mean reversion a

If prices for reference Bermudan options are available we can use these
prices to calibrate mean reversion.



If we don't have Bermudan prices available we can resort
to alternative objectives to calibrate mean reversion

> Ratio of short-tenor and long-tenor option volatilities.
> Auto-correlation (or inter-temporal correlation) of historical rates.

> Payment-delay convexity adjustment.



Mean reversion impacts the slope of short-tenor volatilities
versus long-tenor volatilities

» For the analysis of short- vs. long-tenor volatilities we make several
approximations.

» Consider continuous forward yield

F(f7To,TM):|n[P(t7T0)] 1

P(t,Tm)] Tu—To

» We will analyse standard deviation ratio for a Ty; — To forward yield
and a Ty — Tp forward yield,

_ V/Var [F(To, To, Tu) | F]
VVar [F(To, To, Tw) [ Fe]

How are forward yields (and standard dev's) related to forward swap rates
(and implied volatilities)?



We approximate swap rate by continuous forward yield |

Consider swap rate with start date Ty and maturity Ty
Y URP(T)
YL CRD
First we rewrite swap rate in terms of single-curve rate plus basis spread)
X L(0FP(eT) 3 [D) 1 #P(t, Tjm)
a > TiP(t, T)) >iTiP(t, T))
b(t)

5(t)

S(t)

Assume b(t) is deterministic (similar to assuming D are deterministic).
Simplifying single-curve swap rate yields

_ P(t, To) — P(t, Tm)

SO = =R T)

+ b(t).




We approximate swap rate by continuous forward yield Il

Approximate annuity with only single long fixed-leg period Ty to Ty with
T1 = TM — To.
Then

~ P(ta TO) — 'D(ta 7-l\/l) P(t7 TO)

1
()~ (Tm = To) P(t, Tm) ol = {P(t, Tm) ] Tu—To o(t).

First-order Taylor-approximation In (x) =~ x — 1 leads to

N P(t, To) 1
S(t) ~In [P(t, T,t,)] T —To |

b(t) = F(t, To, Tm) + b(t).

Deterministic basis spread assumption for b(t) yields

Var[S( TQ) | .7:1»] ~ Var[F( To, T(), T/\//) | ft] .



Also we approximate implied ATM volatility with standard

deviation
Swap rate S(t) is approximately normally distributed in Hull-White
model. Thus
dS(t) ~ as(t)dWA(t)
for a deterministic volatility function os(t) depending on Hull-White
model parameters.
Ito-isometry yields

V2 = Var[S(To) | F] :/t "[os() dt.

Vanilla options depend only on terminal distribution of swap rate. Thus
an alternative swap rate with

dS(t) ~ ondWA(t) with o2 =12/ (To—t)

yields same Vanilla option prices.
However, by construction oy is also the implied normal volatility of

5(To) and S(Tp) . This yields the relation
Var[S(To) | Fe] = o (To — t).



We get the relation of the volatility ratio |

2
To, Tm
_ V/Var[F(To, To, Tm) | Fo] \/{UN } (To—1) T

= Nar[F(To, To, T, B : o™
VVar [F(To, To, Tn) | Fi] \/|:0,XI—O;TNi| (To—1t) In

It remains to calculate Var[F(To, To, Tm) | Ft] with

1 1 In[P(To, Tm)]
F(To, To, Tw) = In — .
(To. To, Tw) |:P(T0,TM)] Tw—To Tv—To
From P(To, Tw) = % =G(To, Tu)x(To) =3 6(To, Tw)’(To) e get
P(t, T, 1
F(To, To, Tm) = — {'n [H] — G(To, Tm)x(To) — *G(To, TM)2Y(TO)}

G(To, Tw)x(To) = 3G(To, Tm)? Y(To)
Tm— To

= F(t, To, Tm) +



We get the relation of the volatility ratio |
This yields
G(To, Tw)?
Var [F(To, To, Tw) | Fe] = (0’7M)2Var[x(7'o) | 74
(Tm — To)

and

_ VVar[F(To, To, Tm) [ Fd] _ G(To, Tw)/ (Twa — To)
VVar[F(To, To, Tn) | Fd] - G(To, Tw)/ (Tw — To)

A

Substituting G(To, T1) = [1 — e~2(T1=T0)] /a yields

= e T (T — To)
T[T e ] /(T - To)

Note that
> ) is independent of short rate volatility o(t),

» ) only depends on mean reversion and time differences (i.e. swap
terms) Ty — To and Ty — To.



Further simplification gives a relation only depending on
Tv— Ty

Consider second order Taylor approximation

1
e d(Tu=To) 1 — a(Ty — To) + 532 (Tm — To)*.
This yields

[ 1)~ 322 (7= 7] (= T)
[a(TN—TO)——a2(TN—To)]/(TN—TO)

1—3a(Ty— To) e 73(Tw—To)

-

2a(TN — T()) e_ia(TN_ To)
— E_%a(TM_TN).

Finally, we end up with

O.T07TM
N g 3a(Tu—Tu)
To,TN :
On




The relation oy
numerically

To.Tw ) To T o o La(Tu »
oM o2 s e722(Tu=Tn) can be verified

> Use flat short rate volatility o - calibrated to 10y-10y swaption with

100bp volatility.
> Mean reversion a € {—5%,0%,5%}:

ormal vlatility Top)

v

8
Model-implied n

15

O,
0 20 ©

increasing

5 B
S 3
ormal volatility Tbp)

a=0.05

=
&

@
2
Model-implied

2
8

decreasing



We can use volatility ratio property with co-terminal
swaption volatility calibration

> Consider improvement of overall fit to ATM volatility surface as
general calibration objective.
> Calibrate mean reversion to ratio of

> first exercise and co-terminal swap rate and
> first exercise and short-term swap rate.

1y 2y 3y 4y 5y 6y 7y 8 9y 10y 1ly 12y 13y 14y 15y 16y 17y 18y 19y 20y
1y [26.2 32.5 382 43.1 46.8 49.5 518 54.0 552 56.0 56.5 56.9 57.3 57.8 58.2 58.3 58.4 58.4 58.5 585
2y (385 433 47.2 50.3 52.7 54.9 56.7 58.0 59.0 59.7 59.9 60.0 60.2 60.3 60.5 60.5 60.5 60.6 60.6 60.6
3y [50.6 52.7 54.7 56.5 58.0 59.5 60.6 61.6 62.3 62.9 62.7 62.5 622 62.0 61.8 617 61.6 61.5 614 61.3
4y [57.7 58.9 59.7 60.9 618 62.6 63.4 64.0 64.5 64.8 64.4 639 63.4 62.9 62.5 623 62.1 61.9 617 61.5
Sy [62.1 62.6 63.1 63.7 64.3 64.8 65.3 658 66.1 66.2 656 64.9 643 63.6 63.0 626 62.3 61.9 616 61.2
6y [64.4 64.7 65.0 65.3 656 659 66.2 66.4 66.6 66.6 658 650 64.1 63.3 62.5 621 61.7 61.4 610 60.6
7y [66.3 66.6 66.8 66.8 66.8 669 67.0 67.1 67.0 66.9 66.0 65.1 64.2 63.3 62.4 619 61.4 61.0 60.5 60.0
8y [66.4 66.7 66.9 67.1 67.1 67.1 67.1 67.0 66.9 66.6 65.7 64.7 63.8 62.8 61.9 614 60.9 60.3 59.8 59.3
9y [66.5 66.8 67.1 67.2 67.3 67.3 67.2 67.0 66.7 66.3 65.3 64.3 63.4 62.4 614 60.9 60.3 59.8 59.2 58.6
10y|66:6] 66.9 67.1 67.2 67.2 67.2 67.1 66.8 66.5 66,0 65.0 64.0 63.0 61.9 60.9 60.3 59.8 59.2 58.6 58.0
11y[65.7 66.0 66.2 66.3 66.3 66.3 66.2 65.9 |65:6 65.2 64.1 63.1 62.0 61.0 60.0 59.3 58.7 58.1 57.5 56.8
12y[64.7 65.0 653 65.4 654 65.4 65.3 654 64.7 64.3 63.3 622 61.1 60.1 59.0 58.3 57.7 57.0 56.3 55.7
13y|63.8 64.1 64.4 64.5 64.5 64.5 644 64.2 639 63.5 62.4 613 60.2 59.1 58.1 57.3 56.6 55.9 55.2 54.5
14y|62.9 63.2 63.4 63.6 63.6 636 63.6 63.3 63.0 62.6 615 60.4 59.3 58.2 57.1 56.3 55.6 54.8 54.0 53.3
15y|61.9 62.2 62.5 62.7 627 62.8 62.7 62.5 622 61.7 60.6 59.5 58.4 57.3 562 55.3 54.5 53.7 52.9 52.1
16y|61.0 61.3 61.6 617 61.8 61.8 61.7 615 612 60.7 59.6 58.5 57.4 56.3 552 54.4 53.5 52.7 519 51.0
17y|60.1 60.4 [60:6' 60.8 60.9 60.9 60.8 60.5 60.2 59.7 58.6 57.5 56.4 55.3 54.2 53.4 52.5 517 50.8 50.0
18y|59.1 /594 59.7 59.9 60.0 60.0 59.8 59.6 59.2 58.7 57.6 56.5 55.4 54.3 53.2 52.4 51.5 50.7 49.8 49.0
19y|5812 58.5 58.8 59.0 59.1 59.1 58.9 58.6 582 57.7 56.6 55.5 54.4 53.3 522 51.4 50.5 49.7 48.8 47.9
20y|57.3 57.6 57.8 58.1 58.1 58.1 57.9 57.6 57.2 56.6 55.6 54.5 53.4 523 51.3 50.4 49.5 48.6 47.8 46.9




Another calibration objective is time-stationarity of the
model

> Based on mean reversion the calibrated term-structure of short rate
volatilities changes:

250 4 — a=0.11
_ —— a=0.09
g — a=0.07
= 2001 — a=10.05
] —— a=0.03
g ﬁ — a=0.01
0 +——"" —_— —— a=-0.01
= —— a=-0.03
E —— a=-0.05
o 100 4

E

=

=} ——

=

3

B \—‘\‘_‘—i

T T T
0 2 4 6 8 10 12 14 16 18 20
time t

We can choose mean reversion such that calibrated short rate volatility is
as close to constant as possible.



An alternative view on mean reversion is obtained via
auto-correlation

Consider

G(Ty, T, To) = YG(To, Tim)2y( T
F(T07 T07 TM) = F(t7 T07 TM) + ( 2 M)X( 07)—M _2 T(E = M) y( 0)'
Then

COI’I’[F(T(), T()7 TM), F(Tl, Tl, TN)] = Corr [X(To),X(Tl)] .
We have

-
x(T) = e72T=8 | x(¢) —I—/t =0 (y(u)du + U(u)dW(u))] .

It follows for Ty > To (see exercises or literature)
_ -~ 1 _ e—2aTg
Corr [x(To) x(Ty)] = e 27Ty o,

Auto-correlation (or inter-temporal correlation) is independent of
volatility o(t) and maturities Ty and Ty.



Auto-correlation property is sometimes used to calibrate
mean reversion to interest rate time series

Consider limit Tg — oo then

Corr [x(To), x(T1)] ~ e—2a(Ti=To),

> Use a time-series of proxy rates {R(tk)},_;,  and estimate
p(A)=Corr [R(tx), R(tx + A)].
» Find mean reversion a such that

p(A) ~ e72aA.

» However, method strongly depends on the choice of proxy rate and
estimation time window.
» Also, mean reversion in risk-neutral measure needs to be

distinguished from mean reversion in real-world measure, see e.g.
Sec. 18 in

> R. Rebonato. Volatility and Correlation.
John Wiley & Sons, 2004



Outline

Calibration Methodologies for Hull-White Model

Summary of Hull-White model calibration



Summary on Hull-White model calibration

» Hull-White model calibration is distinguished between
> short rate volatility calibration,

> mean reversion parameter calibration.

> Short rate volatility is calibrated product-specific to match relevant
Vanilla options.

> For Bermudan swaptions these are co-terminal European swaptions.

> Mean reversion calibration involves subjective judgement regarding
calibration objective.

> Fit to reference exotic prices (e.g. Bermudans) if available.

> Improve overall calibration fit to ATM swaption volatilities or
time-stationarity of model.



Part VII

Sensitivity Calculation



Outline

Introduction to Sensitivity Calculation
Finite Difference Approximation for Sensitivities
Differentiation and Calibration

A brief Introduction to Algorithmic Differentiation



Outline

Introduction to Sensitivity Calculation



Why do we need sensitivities?

Consider a (differentiable) pricing model V = V/(p) based on some input
parameter p. Sensitivity of V w.r.t. changes in p is

(o) = d\gl()p).

» Hedging and risk management.

> Market risk measurement.

> Many more applications for accounting, regulatory reporting, ...

Sensitivity calculation is a crucial function for banks and financial
institutions.



Derivative pricing is based on hedging and risk replication
Recall fundamental derivative replication result

V(t) = V (t, X(t)) = ¢(t) " X(t) for all t € [0, T],

> V/(t) price of a contingent claim,
> ¢(t) permissible trading strategy,
> X(t) assets in our market.

How do we find the trading strategy?
Consider portfolio w(t) = V/(t, X(t)) — #(t)" X(t) and apply Ito’s lemma
dr(t) = py - dt + [Vxm(0)] " - ox dW(t).

From replication property follows dx(t) =0 for all t € [0, T]. Thus, in
particular

0=Vxn(t) =VxV(t,X(t))— o(t).
This gives Delta-hedge

o(t) = Vi V(t,X(t)).



Market risk calculation relies on accurate sensitivities (1/2)

Consider portfolio value 7(t), time horizon At and returns
An(t) = n(t) — n(t — At).

Market risk measure Value at Risk (VaR) is the lower quantile g of
distribution of portfolio returns Ax(t) given a confidence level 1 — «,
formally

VaR, =inf{q s.t.P{An(t) < q|n(t)} > a}.

Delta-Gamma VaR calculation method consideres m(t) = 7 (X(t)) in
terms of risk factors X(t) and approximates

A7~ [Vir (X)]T AX + %AXT [Hx7 (X)] AX.



Market risk calculation relies on accurate sensitivities (2/2)

Am =~ [Vxr (X)]T AX + %AXT [Hx7 (X)] AX.

» VaR is calculated based on joint distribution of risk factor returns
AX = X(t+ At) — X(t) and sensitivities V x7 (gradient ) and Hx
(Hessian).

> Bank portfolio 7 may consist of linear instruments (e.g. swaps),
Vanilla options (e.g. European swaptions) and exotic instruments
(e.g. Bermudans).

» Common interest rate risk factors are FRA rates, par swap rates,
ATM volatilities.



Sensitivity specification needs to take into account data
flow and dependencies

Market rates R, for
FRAs and Swaps

I

‘ Multi-Curve Calibration ‘

I

Discount factor
curves P(0,T)

Market-implied
volatilities oy

!

=

Vanilla model
calibration/interpolation

I

Terminal distribu-
tions via oy (S, K, T)

l

Vanilla instrument pricing ‘

_.{

Vanilla option pricing

Model parameters
(mean reversion a)

!

Exotic model volatility
calibration

I

Model volatility o (t)

I

I

e.g. swap prices
Swap

[

e.g. Europ. Swap-
tion prices VSwpt

4,{

Exotic option pricing ‘

{

e.g. Berm. Swap-
tion prices VEer™

Depending on context, risk factors can be market parameters or model

parameters.



In practice, sensitivities are scaled relative to pre-defined
risk factor shifts

Scaled sensitivity AV becomes

_ dv(p)

AV
dp

“Ap =~ V(p+ Ap)— V(p).

Typical scaling (or risk factor shift sizes) Ap are
> 1bp for interest rate shifts,
» 1bp for implied normal volatilities,

> 1% for implied lognormal or shifted lognormal volatilities.



Par rate Delta and Gamma are sensitivity w.r.t. changes in
market rates (1/2)

Bucketed Delta and Gamma

Let R = [Rk]k:L__q be the list of market quotes defining the inputs of a
yield curve. The bucketed par rate delta of an instrument with model
price V = V(R) is the vector

oV ov
Ar=1bp - |=—,...,—|.
R P |:8R17 76Rq:|
Bucketed Gamma is calculated as
2V o2V
Fp=[1bp]? | —s, ... = | .
R [ bp] |:aR127 ,8R3:|

» For multiple projection and discounting yield curves, sensitivities are
calculated for each curve individually.



Par rate Delta and Gamma are sensitivity w.r.t. changes in
market rates (2/2)

Parallel Delta and Gamma
Parallel Delta and Gamma represent sensitivities w.r.t. simultanous shifts
of all market rates of a yield curve. With 1 =[1,...1] we get

_V(R+1bp-1)— V(R—1bp-1)
1T _ E :
AR =1 AR = ].bp (9Rk > and

_ o2V _ _ _
FTr=1"Tr=[1bp]>-S Z—% ~ V(R+1bp-1)—2V(R)+ V(R —1bp-1).
R R [bp]zk:aR’f (R+1bp-1)—2V(R)+V(R—1bp-1)



Vega is the sensitivity w.r.t. changes in market volatilities

(1/2)

Bucketed ATM Normal Volatility Vega
Denote ¢ = [aﬁ,’/] the matrix of market-implied At-the-money normal

volatilites for expiries k =1,...,q and swap terms [ =1,...,r.
Bucketed ATM Normal Volatility Vega of an instrument with model price
V = V(&) is specified as

oV

P
oy

Vega = 1bp -

k=1,...,q, I=1,...r



Vega is the sensitivity w.r.t. changes in market volatilities

(2/2)

Parallel ATM Normal Volatility Vega
Parallel ATM Normal Volatility Vega represents sensitivity w.r.t. a
parallel shift in the implied ATM swaption volatility surface. That is

Vega = 1bp - 1" [Vega] 1

ki
k.l doy,

V(E+1bp-11T) = V(G —1bp-117)
5 .

> Volatility smile sensitivities are often specified in terms of Vanilla
model parameter sensitivities.

» For example, in SABR model, we can calculate sensitivities with
respect to «, 3, p and v.



Outline

Finite Difference Approximation for Sensitivities



Crutial part of sensitivity calculation is evaluation or
approximation of partial derivatives

Consider again general pricing function V = V/(p) in terms of a scalar
parameter p. Assume differentiability of V w.r.t. p and sensitivity

_ dv(p)

AV
dp

- Ap.

Finite Difference Approximation
Finite difference approximation with step size h is

dvip) _ V(p+h) =V(p) _ V(p)—V(p—h)

(one-sided), or

dp h - h
dv(p) _ V(p+h)—V(p—h) ,
i h (two-sided).

> Simple to implement and calculate; only pricing function evaluation.

> Typically used for black-box pricing functions.



We do a case study for European swaption Vega |

Recall pricing function

VWPt — Ann(t) - Bachelier (S(t), K,ov T —t, (;5)

with
Bachelier (F, K,v,¢) = v - [® (h) - h+ &' (h)], h= olF = K]
14
First, analyse Bachelier formula. We get
d Bacheli h h
2 Bacheler (v) = %‘”(“) +u (@ (h) b+ b (R) % — o/ (h) h%
_ Bachelier (v) dh
= e (h) .

With 8 = — 2 follows

2 Bachelier (v) = ® (h) -h-+ &' () — ® (k) - h = &' (k).



We do a case study for European swaption Vega Il

Moreover, second derivative (Volga) becomes

e _ L dh R
ﬁBaCheller (l/) = —ho (h) E = 7¢ (h) .

This gives for ATM options with h = 0 that
> Volga dd—;Bachelier(u) =0.
> ATM option price is approximately linear in volatility v.

Differentiating once again yields (we skip details)

d? . ) n
WBacheller(u) = (W -3) ¢ (h).

It turns out that Volga has a maximum at moneyness

h = +V3.



We do a case study for European swaption Vega Il

Swaption Vega becomes

d Swpt __ d .
%V = An(t) d}/BacheIler(v) T —t.

Test case
> Rates flat at 5%, implied normal volatilities flat at 100bp.
» 10y into 10y European payer swaption (call on swap rate).
> Strike at 5% + 100bp - /10y - v/3 = 10.48% (maximizing Volga).



What is the problem with finite difference approximation? |

» There is a non-trivial trade-off between convergence and numerical
accuracy.

> We have analytical Vega formula from Bachelier formula and implied
normal volatility

Vega = An(t) - &' (h)- VT — t.

» Compare one-sided (upward and downward) and two-sided finite
difference approximation Vegagp using

» Bachelier formula,

> Analytical Hull-White coupon bond option formula,

» Hull-White model via PDE solver (Crank-Nicolson, 101 grid points, 3
stdDevs wide, 1m time stepping),

> Hull-White model via density integration (C?-spline exact with
break-even point, 101 grid points, 5 stdDevs wide).

> Compare absolute relative error (for all finite difference
approximations)

v
|RelErr| = ’egaFD - 1‘
Vega



What is the problem with finite difference approximation?
1

Bachelier Formula Hull-White Analytical

10! 10!
107! 107!
1077 1077
B B
& 107 £ 10
& &
1077 1077
, | — upward | — Upward
1071 — Downward 1071 — Downward
—— Two-sided —— Two-sided
1071 1071
1076 107 1072 1071 107 107 107¢ 1076 107 1072 107 107 107 107%
shift size h shift size h
. Hull-White PDE Solver ) Hull-White Density Integration
10 10
107t 107t
1072 1072
B B
o 107 5 10
3 3
< <
1077 1077
| — upward | — upward
1077 — pownward 1071 — Downward
— Two-sided — Two-sided
10711 10711
10716 1071 10712 1071°  10®  10°  107* 10716 107 10712 1071°  10®  10°  107*
shift size h

shift size h

Optimal choice of FD step size h is very problem-specific and depends on
discretisation of numerical method.



Outline

Differentiation and Calibration



Derivative pricing usually involves model calibration (1/2)

Consider swap pricing function V"2 as a function of yield curve model

parameters z, i.e.
VSwap _ VSwap(z).

Model parameters z are itself derived from market quotes R for par swaps
and FRAs. That is
z =z(R).

This gives mapping
R z s VSWaP — \/SWaP (2(R)).
Interest rate Delta becomes

dV/Swap dz
Ag =1bp- T (z(R))- R (R).
—_—

Pricing Calibration



Derivative pricing usually involves model calibration (2/2)

Swap

dv dz
T @R)- E(R).
—_——— ——

Pricing Calibration

AR = 1bp~

> Suppose a large portfolio of swaps:

» Calibration Jacobian % is the same for all swaps in portfolio.

> Save computational effort by pre-calculating and storing Jacobian.

> Brute-force finite difference approximation of Jacobian may become
inaccurate due to numerical scheme for calibration/optimisation.



Can we calculate calibration Jacobian more efficiently?

Theorem (Implicit Function Theorem)

Let H : R9 x R" — RY be a continuously differentiable function with
H(z, R) = 0 for some pair (z, R). If the Jacobian

dH

Jz = g(z, R)

is invertible, then there exists an open domain U C R" with R € U and a
continuously differentiable function g : U — RY9 with
H(g(R),R)=0 VRelU.

Moreover, we get for the Jacobian of g that

ER [ Mgmn] [ Pisn)]

Proof.
See Analysis. O



How does Implicit Function Theorem help for sensitivity
calculation? (1/4)

» Consider H(z, R) the g-dimensional objective function of yield curve
calibration problem:

> z=[z,...,2,]" vield curve parameters (e.g. zero rates or forward
rates),
> R=[Ry,..., R’q]T market quotes (par rates) for swaps and FRAs,

> use same number of market quotes as model parameters, i.e. r = q.
> Reformulate calibration helpers slightly such that
Hi(z, R) = ModelRatey(z) — Rx.

» For example, for swap rate helpers, model-implied par swap rate
becomes

STL(0, Tymy, o1 +6) - 75 P(£, T))
ModelRat = == .
cdelRatey(2) S 7 P(0,T)




How does Implicit Function Theorem help for sensitivity
calculation? (2/4)

Suppose pair (2, R) solves calibration problem #(2, R) = 0 and 2% (2, R)
is invertible.
Then, by Implicit Function Theorem, there exists a function

2= 2(R)
in a vicinity of R and
= [Pisrn)| [ Distr.n



How does Implicit Function Theorem help for sensitivity
calculation? (3/4)

R = - | T alR). ) h SR (ERLR)].

From reformulated calibration helpers we get

< ModelRate; (2)

T (g(R).R) = : . and
> :
< ModelRateg(2)
dH -
ﬁ( (R),R) =
-1
Consequently
4 ModelRate; (z) 1
9 o [Fmr] |
dr\" T | Tdz B\ -

% ModelRate,4(z)



How does Implicit Function Theorem help for sensitivity
calculation? (4/4)

We get Jacobian method for risk calculation

Swap < ModelRate; (2)

AR = 1bp‘

(2(R))-

. :
PronE <-ModelRate,4(z)

Calibration

> Requires only sensitivities w.r.t. model parameters.

> Reference market intruments/rates Ry can also be chosen
independent of original calibration problem.

> Calibration Jacobian and matrix inversion can be pre-computed and
stored.



We can also adapt Jacobian method to Vega calculation
(1/3)
Bermudan swaption is determined via mapping

[0,1\,,...0,’{,} — {01,...0’(] s \/Berm

market-impl. normal vols HW short rate vols

Assign volatility calibration helpers

Hi (0, 0n) = VB (o) — V2P (oK) .
N—_——

Model[o] Market(akl)

> VBO(o) Hull-White model price of kth co-terminal European
swaption represented as coupon bond option.

> V2" (0k) Bachelier formula to calculate market price for kth
co-terminal European swaption from given normal volatility of.



We can also adapt Jacobian method to Vega calculation

(2/3)

Implicit Function Theorem yields

B [P e owon)]

Sw|
a0 Vi (o)

dH
o o (om.ow)

—1 do,

= [ddModeI[a]}
g VSwpt k
= (o)

> -4 Model[o] are Hull-White model Vega(s) of co-terminal European
swaptions

> daN szpt(o,’(,) are Bachelier or market Vega(s) of co-terminal

European swaptions.



We can also adapt Jacobian method to Vega calculation

(3/3)

Bermudan Vega becomes

d d d o d
VBerm — _VBerm . _M | . _M k k .
don . {do ode [a]] do arket (o)
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A brief Introduction to Algorithmic Differentiation



What

is the idea behind Algorithmic Differentiation (AD)

AD covers principles and techniques to augment computer models or
programs.

Calculate sensitivities of output variables with respect to inputs of a
model.

Compute numerical values rather than symbolic expressions.

Sensitivities are exact up to machine precision (no
rounding/cancellation errors as in FD).

Apply chain rule of differentiation to operations like +, *, and
intrinsic functions like exp(.).



Functions are represented as Evaluation Procedures
consisting of a sequence of elementary operations

Example: Black Formula

Black(:) = w [FP(wd1) — K®(wdh)]
with dyp = 6L 4 2T
» Inputs F, K, o, T

> Discrete parameter w € {—1,1}
» Output Black(+)

vy = x3=F

vio = xx=K

Vi1 = x3=o0

Vo = x=T

vi = vo3/vea = f(v_s,v_2)
V2 = |Og(V1) = f2(V1)

V3 = \/VT) = f3(V0)

Vg = v_1-w3 = fa(v_1,w3)
Vs = w/wvu = f5(vo,v4)

Ve = 05-vw = fo(va)

vy = wvtw = fi(vs, v6)

vs = v—v = fyg(vr,va)

vg = w-vw = fo(vr)

vio = w-w = fio(vs)

vt = ®(w) = fii(w)

vio = ®(vio) = fi2(vi0)

vz = voz-vin = fiz(vos,vi1)
vie = voa-vio = fu(voo,vi2)
vis = viz—vig = fi5(vi3, via)
Vie = Ww-Vvis = fig(vis)

Y1 = V16




Alternative representation is Directed Acyclic Graph (DAG)

vy = x1=F

v, = xx=K

Vi1 = x3=o0

Vo = x4=7

%1 = V_3/V_2 = 1‘-1(V_37 V_2)
v = log(wv) = f(w)

v3 = Jw = fi(w)

Vs = v_.1-v3 = fa(veg,v3)
Vs = w/vu = f5(va,va)

Ve = 0.5 |7} = fﬁ(V4)

vr = w+tw = fi(vs, v6)

Ve = V7 — V4 = fS(VL V4)

Vo = w-v = fo(vr)

vie = w-w = fio(w)

vt = ®(w) = fi(w)

vio = ®(vi) = fi2(vi0)

vis® = v_z-vii = f3(v_3,vi1)
vie, = voa-viz = fu(voa,vi2)
vis = wviz—vie = fis(vi3, via)
Vie = W-Vis = fi6(vis)

y1 = Vie




Evaluation Procedure can be formalized to make it more
tractable

Definition (Evaluation Procedure)

Suppose F : R” — R™ and f; : R — R™. The relation j < i denotes
that v; € R depends directly on v; € R. If for all x € R” and y € R™
with y = F(x) holds that

Vien = X; i:l,...,n
vi = f;(vj)j-<l = 1a . 7I
Ym—i = V- ! - ]-a aOa

then we call this sequence of operations an evaluation procedure of F
with elementary operations f;. We assume differentiability of all
elementary operations f; (i = 1,...,/). Then the resulting function F is
also differentiable.

> Abbreviate u; = (v;);<; € R"™ the collection of arguments of the
operation f;.
» Then we may also write

Vi = f,(u,)



Forward mode of AD calculates tangents (1/2)

> In addition to function evaluation v; = f;(u;) evaluate derivative

. 0 .
v = Z aTjﬁ(u") -V

J=i

Forward Mode or Tangent Mode of AD
Use abbreviations iy = (V;);<; and fi(u;, i) = f/(u;) - ;. The Forward
Mode of AD is the augmented evaluation procedure

[Vi—n7 Vi—n] = [Xiaxi] P= 17 sy
[Vi7 VI] = I:f;‘(U,‘),f;'(U,',l:l,')] I:177/
Wm—isYm—i] = [viei, -] i=m-—1,...,0.

Here, the initializing derivative values X;_, for i = 1...n are given and
determine the direction of the tangent.



Forward mode of AD calculates tangents (2/2)

> With x = (x;) € R” and y = (y;) € R™, the forward mode of AD
evaluates
y = F'(x)x.

» Computational effort is approx. 2.5 function evaluations of F.



Black formula Forward Mode evaluation procedure...

v.y = x31=F vy = 0

V_o = x»=K V_o = 0

Vi = Xx3=0 vy, = 1

Vo = X3p=T Vo = 0

vy = v_3/v_ Vi = v_3/veo—vi-V_g/v_p
v2 = log(v1) v = n/v

v3 = Vv V3 = 05 -w/vs

V4 = vo1w 7! = Vo1-wvitvoi-vg
Vs = w/wvu 173 = W/va—vs-/va
3 = 05-w 3 = 05w

vr = wt+w vr = B+

%] = w-—wv Vg = -

) = w-v ) = w-w

%0) = w-w Vio = w-w

vii = ®(w) it = ¢(w) -

vio = ®(vio) vz = ¢(vio0) - V1o

viz = v_3-vi1 Vi3 = V_3-vi1+vo3- Vi
V14 = vo2-vi2 V14 = Voo-vio+Vvo2-Vi2
vis = V13— Vig Vis = V13— Vvag

Vip = w-Vvis V16 = w-Vis

i = Vvie n = Vi



Reverse Mode of AD calculates adjoints (1/3)

» Forward Mode calculates derivatives and applies chain rule in the
same order as function evaluation.

> Reverse Mode of AD applies chain rule in reverse order of function
evaluation.

> Define auxiliary derivative values v; and assume initialisation v; = 0
before reverse mode evaluation.

> For each elementary operation f; and all intermediate variables v;
with j </, evaluate

» In other words, for each arguments of f; the partial derivative is
derived.



Reverse Mode of AD calculates adjoints (2/3)

Reverse Mode or Adjoint Mode of AD
Denoting 1; = (V;)j~; € R™ and fi(ui, v;) = v - f!(u;), the incremental
reverse mode of AD is given by the evaluation procedure

Vien = Xi i:l,...,n
Vi = f;’(Vj)j-<i i = ,...,I
Ym—i = Vi—j i:m—l,...,O
V,' = }_/,' i=0,...,m—1
u += IC;(U,',V,') i=1...,1
)_(,' = V,' i:n,...,l.

Here, all intermediate variables v; are assigned only once. The initializing
values y; are given and represent a weighting of the dependent variables

Yi-



Reverse Mode of AD calculates adjoints (3/3)

> Vector y = (¥;) can also be interpreted as normal vector of a
hyperplane in the range of F.

> With y = (¥;) and x = (X;), reverse mode of AD yields

xT = V[ F(x)] = y"F(x).

» Computational effort is approx. 4 function evaluations of F.



Black formula Reverse Mode evaluation procedure ... |

voy = x3 = F
vio = x = K
Vo1 = x3 = 0O
Vo = X4 = T

vi = v_3/voo

vo = log(v1)

i = /W

V4 = Vo3
vs = va/va
ve = 0.5 v
Vi = Vs + V6
Vg = v — v
V9 = WwW-Vvy
Vip = w-vg
vii = ®(w)
viz = ®(vio)
Vi3 = v_3-vi1
Vig = Vo2 Vi
Vis = Vi3 — Vi4
Vie = W - Vis
Y1 = Vie

vie = y1 = 1




Black formula Reverse Mode evaluation procedure ...

Y1 = Vie
Vie = y1 = 1

Vis += w - Vi
Vi3 += Vi5;  Vig += (1) Vs
Voo += vip - Via;  Vi2 += v Vig
Vo3 += vi1-V13: Vi1 += v_3- V13
Vio += ¢(vi0) - V12
Vo += ¢(vo) - V11
g += w- Vo
V7= w-
Vi 4= Vg w+= (—1) -V
Vs += V7, Ve += V7
v4 += 0.5-
V4= Us/va; Va4= (—1)-v5-/vs
Vel = v3- Vg, V3= vo1-Vg
Vo += 0.5- V3/V3

V1= /v
Voz+= /vy, Voo+4= (=1)-vi-Wn/v_>
T =X =W
g = X3 = V_1
K = Xo = V_p
ﬁ -

= X = V_3



Forward Mode

v = F(x)x
> Approx. 2.5 function
evaluations.

» Computational effort
independent of number of output
variables (dimension of y).

» Chain rule in same order as
computation.

» Memory consumption in order of
function evaluation.

We summarise the properties of Forward and Reverse Mode

Reverse Mode

)—(T _ _)_/TF/(X)
Approx. 4 function evaluations.

Computational effort
independent of number of input
variables (dimension of x).

Chain rule in reverse order of
computation.

Requires storage of all
intermediate results (or
re-computation).

Memory
consumption/management key
challange for implementations.

» Computational effort can be improved by AD vector mode.

> Reverse Mode memory consumption can be managed via

checkpointing techniques.



How is AD applied in practice?

> Typically, you don't want to differentiate all your source code by
hand.

> Tools help augmenting existing programs for tangent and adjoint
computations.

Source Code Transformation ~ Operator Overloading

> Applied to the model code in > provide new (active) data
compiler fashion. type.

> Generate AD model as new » Overload all relevant
source code. operators/ functions with

» Original code may need to be sensitivity aware arithmetic.
adapted slightly to meet » AD model derived by changing
capabilities of AD tool. intrinsic to active data type.

Some example C++ tools:

ADIC2, dcc, TAPENADE ADOL-C, dco/c++,

ADMB/AUTODIF
» There are also tools for Python and other lamguages:

More details at autodiff.org


autodiff.org

There is quite some literature on AD and its application in
finance

Standard textbook on AD:

> A. Griewank and A. Walther. Evaluating derivatives: principles and
techniques of algorithmic differentiation - 2nd ed.
SIAM, 2008

Recent practitioner's textbook:

» U. Naumann. The Art of Differentiating Computer Programs: An
Introduction to Algorithmic Differentiation.
SIAM, 2012

One of the first and influencial papers for AD application in finance:
> M. Giles and P. Glasserman. Smoking adjoints: fast monte carlo

greeks.
Risk, January 2006



Part VIII

Wrap-up



Outline



What was this lecture about?

_ Interbank swap deal example
Trade details (fixed rate, notional, etc.)

Pays 3% on 100mm EUR
Start date: Oct 30, 2020 .
art date: et 5, Date calculations

End date: Oct 30, 2040 Market conventions
(annually, 30/360 day count, modified following, Target calendar)

Stochastic interest rates Pays 6-months Euribor floating rate on 100mm EUR
Start date: Oct 30, 2020
End date: Oct 30, 2040
(semi-annually, act/360 day count, modified following, Target calendar)
Optionalities
Bank A may decide to early terminate deal in 10, 11, 12,.. years



Part IX

Other Topics
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Terminal Swap Rate Models
Cubic Spline Interpolation
Separable HJM Revisited

Accuracy of Bermudan Pricing Methods



Outline

Terminal Swap Rate Models



We analyse the pricing of more general single-rate payoffs

What is the present value of the complex payoff  (S(T))?

payoff f (5(T)), paid at Ty
swap rate S(T) is fixed at T

Il Il >

T T

rate is accrued from Ty to Ty

Pricing in T;-forward measure yields
V(t) = P(t, 1) -ET [f (S(T)) | F].

> In general, S(t) is not a martingale in T;-forward measure.

» Terminal distribution of S(T) in Vanilla model is specified in annuity
measure.



We need to change the pricing measure to utilize Vanilla
model dynamics
Pricing in annuity measure becomes

An(t) P(T,Ty)

V(t) = P(6.T) BN | 5y ()

SF(S(T)) [ Fe |-

> We need to properly handle the Radon—Nikodym derivative (from
T1-forward to annuity measure)
An(t) P(T,Ty)
P(t, T1) An(T)

> Take out what is known and apply tower rule of iterated expectation

P( Ta Tl)
An(T)

Key challenge is modelling conditional expectation
(T,T)
EA [0 1S(T) = 5.

V(t) = An(t) - EA [EA [ |S(T) = s} -f(S(T)) ft} .




Outline

Terminal Swap Rate Models
Annuity Mapping Functions



Terminal swap rate models are characterised by an annuity
mappig function

Annuity Mapping Function
Consider a swap rate S(T) with rate fixing at T and corresponding
annuity measure. For pay times T, > T the annuity mapping function is

defined as
P(T,T,)

a(s, T,) = EA [ n(T)

|S(T)=s]|.

With annuity mapping function at hand we can calculate
V(t) = An(t) - E* [a (S(T), Ta) - £ (S(T)) | F]
— An() / o(s, T1) - F(s) - dPA(s).

— 00

Once annuity mapping function is known, we can integrate against
terminal distribution dP*(s) from Vanilla model.



Annuity mapping function needs to comply with
model-independent properties (1/3)

No-arbitrage Condition
Forall T,> T

P(t, Tp)
An(t) ~

B a(s(7). ) |71 =5 (o4 | 2L sny = 17 -

» No-arbitrage condition is closely linked to martingale property
related to Radon—Nikodym derivative
An(t) P(T,Ty)
P(t, T1) An(T) °

> Specifies level of a(s, T,) in s-direction.



Annuity mapping function needs to comply with
model-independent properties (2/3)

Additivity Condition
Consider annuity of S(T) given by An(T) =" 7P(T, T;) then for all

ZT, sT)—EAZ A )|5(T)—s =1.

» Additivity condition specifies overall level of a(s, T,) in T,-direction.



Annuity mapping function needs to comply with
model-independent properties (3/3)

Consistency Condition

Consider swap rate representation

Zj Lj(T)%J"D(T’ 7-1) Zj [ngi - 1] 7Q;J"D(T’ 7—1'—1)

T =
S(7) An(T) * An(T)
single-curve swap rate basis spread
_P(T,To) = P(T, Ty) | 2w P(T, Tj1)
An(T) An(T)

For all s we get

a(s, To) —af(s, Ty) + ij ca(s, Tj_1) =s.
J

> Note that typically w; < 1, dominating term is (s, To) — a (s, Tn).

> Consistency condition specifies slope of (s, T,) in T,-direction
(relative to realisation of swap rate S(T)).



T-forward measure yields a very useful alternative
representation of the annuity mapping function (1/3)

Theorem
In the T-forward measure the annuity mapping function becomes
ET[P(T,T, T) =
Oé(S,Tp): [ ( ’ P)|5( ) S].
ET[An(T)|S(T) = 5]




T-forward measure yields a very useful alternative
representation of the annuity mapping function (2/3)

Proof.

Consider Radon—Nikodym derivative from annuity measure to T-forward
P(0,T) An(T

measure R(w) = A(n(O)) P('%T)).

Applying Baye's rule for conditional expectation yields

ET [R (T.T) |S(T)—s]

P(T, T) _
2 150 =] - —rRism =4
T ETIP(T. T,)|S(T) = o]
PO ET [An(T)|S(T) = 5]

ET[P(T, T,)[S(T) = 5]
ET [An(T)[S(T)=s] '




T-forward measure yields a very useful alternative
representation of the annuity mapping function (3/3)

Corollary
Define the conditional zero coupon bond (for T' > T) via

(s, TY=ET[P(T,T")|S(T) = s].

Then the annuity mapping function becomes

7(s, Tp)

T)= =— 2.

) S ST s T

Proof.

Follows directly from above theorem, definition of annuity An(T) and
linearity of expectation. O

Annuity mapping function is fully specified by conditional expectation of
future zero coupon bonds.



Reformulating TSR pricing ensures consistency to initial
yield curve for arbitrary annuity mapping functions (1/3)

Using tower rule we can re-write

V() = An(t) - B4 []EA [PE‘Z(TT;) 1S(T) = s} F(S(T)) |]-'t]

BA (B[S0 1 S(T) = 5] - £(S(T)) | 7]
BA [BA |50 S(T) = 5] | 7]

B4 [o(s, i) - £ (S(T)) | 7
FAla(s )| 7]

=P(T, Ty)-

=P(T, Ty)-



Reformulating TSR pricing ensures consistency to initial
yield curve for arbitrary annuity mapping functions (2/3)

Yield curve reconstruction property

For any approximate annuity mapping function a(s, T,) ~ a(s, T,) and
any approximating expectation operator £ ~ EA (wnth Ela(s, T, )] > 0)
we get that the (approximate) present value of a payoff V(T,) =

becomes

Ela(s, T,) - V(T

Vo) = P(T.Ty) =

=P(T,T,).



Reformulating TSR pricing ensures consistency to initial
yield curve for arbitrary annuity mapping functions (3/3)

Correcting non-arbitrage-free annuity mapping functions
We can re-write

B [a(s, Th) - £(S(T)) | 7]
EA[a(s, T1) | Fil

V(t)=P(T, T1)-

_ P(t,T))  ofs,Ty)
= An(t) - EA An(t) EA[a(s, Tll) | 7]

&(S,Tl)

£(S(T) [ F2

Then, by construction, for any a(s, T1)

P(t, Tl)

EA [64(5, Tl) |Ft] = An(t) .

For details on this aspect, see also [2], Sec. 16.6.7.



How can we actually specify annuity mapping function?

(a) Use a term structure model:
> Term structure model gives representation of future zero bonds
P(T, T").
> Calculate from model dynamics

(s, Tp)

T,) = o lp)
als, Tp) ST (s, T

(b) Postulate a parametric form:

> Assume a parametric form for (s, T") (possibly inspired by term
structure model).

> Alternatively, directly assume a parametric form of a(s, T,) in terms
of s and Tp.

> Calibrate parametric form(s) to model-independent properties.



Outline

Terminal Swap Rate Models

Combining Hull-White Model with Vanilla Model



We analyse Hull-White model for annuity mapping
function (1/3)

Recall zero coupon bond formula

I,DD(((()): —g_/)) exp {—G( T, T )x — 7G( T’2 ) y( T)} .

P(x; T, T") =
Function G(T, T') is specified by mean reversion
G(T, T) = {1 - e—a(T’—”} /a.

Auxilliary variable y(T) represents (deterministic) variance

i = [ o] s



We analyse Hull-White model for annuity mapping
function (2/3)

For now, assume mean reversion a and volatility o(t) are given.
Condition S(T) = s is equivalent to

P(x;T,To) — P(x; T, Tn)  >jwi- PO T, Tiq)

F = —
0= =5 BT Ty S Ton POaT.T)

s=0.

» Obviously there is some (x,5) with F(x,5) =0 (any x directly
implies an s which solves eqation).

> Assume 2E(s, x) > 0 for all x.

> Usually no restriction since
2 P(x; T, Tn) = —G(T, Tw)P(x; T, Tw) < 0 dominates.



We analyse Hull-White model for annuity mapping
function (3/3)

Implicit function theorem implies a continuous differentiable function

g(s) such that
F(s g(s)) =0, ie, x=g(s)

Thus x(T) = g (5(T)) which gives

(s, TY=ET[P(x(T); T, T")|S(T) = s]
=ET[P(g(S(T)); T, T')|S(T) =]
=P(g(s); T, T")

_ P(0,T)
~ P(0,T)

e { ~6(T Tt - AT}

Model requires numeric solution of F(s,g(s)) = 0 for a given instance of
s.



How to combine Hull-White model and Vanilla model?

Hull-White TSR model is specified via
P(0, T") G(T, T')?
T)=—"=~ —-G(T, T’ ———y(T
(5. ) = gy e {67 Tete) - S ()
with F(s, g(s)) =0.
> Mean reversion (for G(T, T')) is independent of Vanilla model.
> Calibrate to market prices of related/sensitive intruments.

> We also need to specify volatility o(t) for calculation of y(T).

» Hull-White model implies terminal distribution of S(T) which, in
general, is different from Vanilla model.

> This constitutes inconsistency inherent in TSR models.
> Calibrate Hull-White model as close as possible to Vanilla model.

> Typical choice is matching ATM volatilities.



Alternative volatility choice mixes Hull-White and Vanilla
model dynamics (1/2)

Hull-White model swap rate dynamics in annuity measure
dS (t,x(t)) = a%S(t,x(t)) ~dx(t) + (... )dt
0
) aS(O,X(O)) ~dx(t) + (...)dt.

Thus

Var[S(T,x(T))] = [%S(O,X(O))} Var[x(T)] = |:5%5(0,X(0)):| y(T).



Alternative volatility choice mixes Hull-White and Vanilla
model dynamics (2/2)

2
Var[S(T,x(T))] = [(;15(0,)((0))} -y(T).

This yields approximation for y(T) for conditional zero coupon bond
formula 7(s, T')

y(T) = [;(S(O,x(o))]_ -Var[S(T)].

Vanilla model

Hull-White model

> Sensitivity 25 (0, x(0)) only depends on mean reversion.

» Variance Var[S(T)] is calculated solely from Vanilla model.



Outline

Terminal Swap Rate Models

Linear Terminal Swap Rate Models



Linear TSR models postulate a parametric form for annuity
mapping function

Linear TSR Model

In a linear TSR model the annuity mapping function is of the form

P(t, Tp)

a(s, Tp) = a(T,) [s — S(t)] + An(t)

> Linear TSR model complies with no-arbitrage condition since

EA [a(S( T), TP) |]:'t] — a( Tp) .EA [[S( T) — S(t)] |-7:t] —|—P/gi;;(g?)
_ P(t, Tp) B
An(t)

> It remains to specify slope function a(T,).



Additivity and consistency condition yield constraints for

Inear TSR model slope function |
Additivity condition yields

zn:T,-.a(s, T)=1[s— S(t)]zn:ﬂ. : a(ﬂ)+iT;P(t’ T) _ .
= i=0 " An(t)
=0 1

For consistency condition we extend the index set, times and weights
appropriately to

a(s, To) —a(s, Tn) + ij afs, 7},1) = Z@k -afs, 7',(,1).
Then
Zk:a;k-a(s, Fea)=[s— S(t)]zk:ak (o) + @ P(ZHZ)*) .

k

=1 S(t)



Additivity and consistency condition yield constraints for
Inear TSR model slope function Il

Additivity and consistency condition for linear TSR model
Overall slope level

zn:T; . a(T,) =0.
i=0

Change in slope

Zu")k - (7—k—1) =1
k
or equivalently

a(s, To)—a(s, Tw)+ Y wj-als, Tj-1) = L.
j



Additivity and consistency condition fully specify a bi-linear
annuity mapping function |

Bi-linear annuity mapping function
The bi-linear annuity mapping function is given by

a(s, To) = [u- (T — T,) +v]-[s — S(6)] + Pf\:(g’)
a(TP)
with
u=— 2iTi ~
D (T = Tl 2 @) = [0 @k (T — Tien)] - 12,7
D7 (Tw — Ti)]

TS (T = Tl [ @ — [ @k (T — Ten)] - [



Additivity and consistency condition fully specify a bi-linear
annuity mapping function |l

Result follows from

EH:T,"E(T;) = UEH:T,'[TN— T,']+V§n:7',' =0
i=0 i=0 i=0

——

myy mi2
Z(:Jk -a (Tk—l) = Uza)k [TN — Tk—l] +VZJJ;{ =1

k k k
——
moy m22
and Cramer's rule

0-m22—1~m12 1om11—0~m21

u= and v = .
mi1 - M2 — M2 - M2y mi1 - M2 — M2 - M2




Some comments regarding bi-linear annuity mapping
function...

» Method is straight forward and easy to implement.

> Appears natural due to simple linear structure and full specification
via model-independent conditions.

» Linear TSR models also allow for very efficient pricing of CMS
swaplets and options via power options.

» However,

> method lacks linkage to term structure models,

> does not allow for calibration to convexity adjustments observed in
the market (e.g. via free mean reversion parameter).



Outline

Cubic Spline Interpolation



What is the purpose of spline interpolation?

> Suppose we want to fit a curve to a set of data points:

« Data
6.00% -

5.50% -

5.00% -
@
T 4.50% . .
o

4.00% .

3.50%

3.00% T ‘
5 10 15 20
maturity T

+ Data =—Linear
6.00% -

5.50% |
5.00% -

QL

= 450%

25



We analyse the example of cubic spline interpolation

First analyse a cubic function f(t) on [0, 1] via

f(t) = a3t + axt® + art + ap.

We get
f(0) = ao, f'(0) = a3+ a+ a1+ ao,
f(1) = ai, f'(1) = 3a3+2a+ ar.
Solving for ag, ..., as yields
ao = f(0), a = 3[f(1)-f(0)]-I[f(1)+2f(0)],
a = f(0), a3 = =2[f(1)—FfO)]+[f(1)+f'(0)].

Cubic spline segment can be fully specified via function values and
derivatives.



Cubic spline consists of segments of cubic functions

Assume we have a grid xg, ..., x, with corresponding function values
Yo, ---,y1 and slopes gy, ..., g, such that

y(xi)=yi and y'(x) =g
Corresponding cubic spline is specified as

X — Xj 3
7<) =[-2 (i — yi1) + (& + &-1) (5 — x1)] (—1) N

Xi — Xj—1
2
B(yi — yie1) — (& + 2gi-1) (x — xi-1)] <XX1) N

Xj — Xj—1
X — Xj_
gi—1(xi — xi—1) (II) + Yi—1

Xi — Xj—1

for x € [X,',l,X,'].
Note, spline representation follows from transformation
X — Xj_ dt 1
t=""""1 and —=—" .
Xi — Xj—1 dx  Xj—Xj_1
Spline representation via x;, y; and g; yields continuously differentiable
function.



We can use slopes g; to specify smoothness and

monotonicity properties
> Usually, x; and y; are given; slopes g; are a free parameter.
> Particular cubic spline methods are distinguished in how g; are
determined.

Natural Cubic (C?) Spline Interpolation

Choose slopes such that y(x) is twice continuously differentiable.
Requires solving tridiagonal linear system.

Kruger Constrained Interpolation
Set slopes via harmonic mean. Abbreviate s; = ¥=Y=1  Then

Xi—Xi—1

o 0 Si-Sip1 < 0
&= 2sisit1/ (si+siy1) else

: 3 1 3 1
fori=1,...,n—1, 8 = 551 — 381 andg,,:§sn—§g,,_1.

There are several more cubic spline interpolation methods.®

9See e.g. Y. lwashita. Piecewise Polynomial Interpolations. OpenGamma
Quantitative Research. 2013
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Separable HJM Revisited
State Variable Representations



We have another look at the relation of x(t) and y(t) in
the HJM model setting

We have (in risk-neutral measure)

x(t) = H(t) [/Otg(s)Tg(s) </t h(u)du) ds + /Otg(s)TdW(s)}
" 70 = 1 [ 60) els)as) HCo)

Change of measure to T-forward measure in terms of Brownian motion
becomes

dWT(t) = op(t, T)dt + dW(t)

-
op(t, T) = g(t) (/t h(u)du) .

with



In the T-forward measure the drift term of x(t) may
simplify |

Change of measure yields for x(t)

() = H(z) | | &) oels )~ op(s a5+ [ g(s)TdWT(s>]

_nw | /0 a(5)&(s) (- /t Th(u)du) ds + /0 tg(s)Tdva(s)}

- -
= H(t) /Og(s)Tg(s)ds] H(t) </t H(t)lh(u)du>

+HE) [ 60)TawT()
T t
= —y(0)- [ HO )+ () [ () awT(s)

= y(t)- G(t. T) + H(t) / g(s)TdW(s).



In the T-forward measure the drift term of x(t) may
simplify Il

Further
H(T)"'x(T) = H(t)"'x(t) = H(t)"'y(t)- G(¢, T)+/Tg(5)TdWT(S)~

This gives

ET [x(T)|F] = H(T)H(t) ™ [x(t) + y(t) - G(t, T)],

Cov' [x(T)| F]=E"

H(T) ( / g(s)Tg(s)ds> H(T)

=E" [y(T) = H(T)H(t) 'y (t)H(t) " H(T) | F] -




-1

For implementations we need to calculate H(T)H(t) "and

G(t, T) I

We use representation in terms of short rate volatility
o.(s)" = H(s)g(s) "and mean reversion x(s) via H'(s) = —x(s) - H(s).
It follows

H(t, T) = H(T)H(t)™

exp {— ftT Xl(s)ds}

{ | exp{—ftTXd(s)ds}
G(t, T) = /T H() " h(u)du — /T H(u)H ()~ 1du



For implementations we need to calculate H(T)H(t) tand
G(¢, T) Il

Assume x(s) is (piece-wise) constant on a time grid Tk. Then, for
t € [Th-1, Til,

H(O’ t) = H(O, Tk—l) : H( Tk—1, t)
with components H;(Tx_1, t) given as
¢ k
Hi(Tk—1,t) = exp —/ xi(s)ds p = e Xi (t=Tk—1)
Tk—1

and
G(O7 t) = G(O, kal) + H(O7 kal) . G(kal, t)



For implementations we need to calculate H(T)H(t) tand
G(t, T) Il

with components G;(Tx_1,t) given as

t u
Gi(Tk—lyt):/ exp —/ Xi(s)ds p du
Ty—1 Ty—1
t u
:/ exp{—/ Xffds} du
Ty—1 Ty—1

:/t exp{—xf‘ (u— Tk-1)} du

Ty—1

_ [1 —exp {—xK(t— Tk_l)}] '

XK

The quantities H(0, Tx_1) and G(0, Tx_1) can be pre-computed and
cached for efficient calculation of H(t, T) and G(t, T).



For Gaussian models we can also calculate y(t) |

We have for t € [Tx_1, T«]

Tk—1

y(t) = H(Tk—1, t)y(Tk—1)H(Ti—1, t) + H(t) (/t g(s)Tg(s)ds> H(t)

We re-write g(s) in terms of short rate volatility o,(s) = g(s)H(s) as
t

y(t) = H(Tk—1,t)y(Ti—1)H(Tk—1, t)—i—/T H(s, t)o,(s) "o,(s)H(s, t)ds.

Assume o,(s) is (piece-wise) constant on [Tx_1, Tx]. Then denote

d
22 = [27)]7_ = o(s)Tau(s), s € [Tior, Tal



For Gaussian models we can also calculate y(t) Il

The matrix components M; j of M(Ty_1,t) = f;k_l H(s, t)X%H(s,t)ds
are

t t
M, = / e—x,-k(f—S)z’?je—xf(t—S)ds _ z%j/ o () (t=9) 4o
’ Tk—1 , N

22
X, +X

7 [L—exp {— (i +x) (t = Tien)}] -
As a result we get

y(t) = H(Tik—1, t)y(Tk—1)H(Tk—1,t) + M(Ty_1,t).

Again, y(Tk_1) can be pre-computed and cached for efficient calculation
of y(t).
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Accuracy of Bermudan Pricing Methods
PDE and Density Integration Method



We analyse the accuracy of numerical methods by means
of a coupon bond option

Market data and model setup
Flat yield curve 3% (cont. compounding, Act/365), 100bp short rate
volatility, mean reversion 5%.

Coupon bond option test instrument setup

» European call option, exercise in 10y at unit strike.
> 3% coupons at 11y, ...,20y, unit notional payment in 20y.
> All dates and year fractions in model times.

Testing approach

> Construct pseudo Bermudan option from European coupon bond
option by adding zero strike exercises at 2y and 6y.

» Compare numerical Bermudan option price versus analytical
European option price

B Pri
RelErr — ermudan r.lce _q
EuropeanPrice



Density integration methods are compared for scenarios of
grid size, # grid points and Hermite polynomial degree |

Simpson's rule - w/o (1) and w/ (r) break-even calculation

20 40 60 80 100 120 20 40 60 80 100 120
nGridPts. nGridPts

> Accuracy is mainly limited by grid size.

> Break-even calculation required to achieve higher accuracy.



Density integration methods are compared for scenarios of
grid size, # grid points and Hermite polynomial degree |l

Hermite integration - degree d =5 (1) and d = 10 (r)

Hermitelntegration Hermitelntegration
1 — gridsize=3 L — gridsize=3
1o —— gridsize=4 1o —— gridsize=4
— gridsize=5 — gridsize=5
1072 1072
- =
: :
10 £ 10
H H
2 2
10 10
107 107
20 40 80 100 120 20 40 60 80 100 120
nGridPts, nGridets

> Higher polynomial degree is required to mitigate non-smooth payoff
impact.

> Too large grid size seems to deteriorate accuracy.



Density integration methods are compared for scenarios of
grid size, # grid points and Hermite polynomial degree Il

Cubic spline - w/o (1) and w/ (r) break-even calculation

Cspline CSplineBE

— gridsize=3 — gridsize=3
—— gridsize=4 —— gridsize=4
— gridsize=5 — gridsize=5

1071

"
S

| Num /An-1]

nGridPts. nGridPts

» Accuracy is mainly limited by grid size and break-even calculation.

> CSpline with break-even clearly outperforms other methods for small
number of grid points.



theta=0.5, lambdaoN=0.0, stdDev=3

theta=0.5, lambdaoN=0.0, stdDev=5

We analyse PDE methods using contour plots of error
estimate for # of grid points versus time step size |

theta=0.5, lambdaoN=0.0, stdDev=7

nnnnnnnnnn

theta=0.5, lambdaoN=None, stdDev=3

theta=0.5, lambdaoN=None, stdDev=5

theta=0.5, lambdaoN=None, stdDev=7

”””””””””””




We analyse PDE methods using contour plots of error
estimate for # of grid points versus time step size |l

> # grid points need to be increased simultanously to reducing time
step size to improve accuracy.

> Again, accuracy is limited by grid size.

> For small grid sizes approximation of boundary condition (via Ao )
improves accuracy.



We analyse PDE methods using contour plots of error
estimate for # of grid points versus time step size Il

1 - . ..
Compare 0 = 5 (I) versus ¢ = 1, i.e. Implicit Euler (r)
theta=1.0, lambdaoN=0.0, stdDev=>5

deo

theta=0.5, lambdaoN=0.0, stdDev=>5

# gridpoints # gridpoints

» Implicit Euler requires smaller step size to achive same accuracy as
for = 3 (i.e. Cranck-Nicolson).
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We analyse the accuracy of numerical methods by means
of a coupon bond option |

Market data and model setup
Flat yield curve 3% (cont. compounding, Act/365), 100bp short rate
volatility, mean reversion 5%.

Coupon bond option test instrument setup

> European/Bermudan call option, exercise in 10y (11y,...,19y) at
unit strike.

> 3% coupons at 11y, ...,20y, unit notional payment in 20y.

> All dates and year fractions in model times.



We analyse the accuracy of numerical methods by means
of a coupon bond option Il

Testing approach

» Construct pseudo Bermudan option from European coupon bond
option by adding zero strike exercises at 2y and 6y.

» Compare numerical Bermudan option price versus analytical
European option price.

BermudanPrice
RelErr = | ————— —
EuropeanPrice

» Compare MC Bermudan price versus density integration reference
price.



MC methods are compared for scenarios of seed, # paths,
as well as model and option parameters |

Base scenario, ATM European option

10°

— seed=0
—— seed=1
!\5 — seed=2
v — seed=3
- N Tl
W07 g TN —— seed=4
=
c
< 102
E
=
=4
— N, .
1077 4 AN
Ay
N
S
\
Y
1074 T T T T T
10? 10° 104 10° 108

nPaths

» MC estimate is a random number - dependency on seed illustrates
this aspect.



MC methods are compared for scenarios of seed, # paths,
as well as model and option parameters ||

ATM European option - low volatility (10bp, left) and
negative mean reversion (—3%, right) scenarios

;;;;;

nnnnnn

> Relative (!) error more or less invariant to model parameters.

> Note that ATM option value is roughly proportional to variance
(driven by volatility and mean reversion).



MC methods are compared for scenarios of seed, # paths,
as well as model and option parameters Il|

ITM European option - low volatility (10bp, left) and negative
mean reversion (—3%, right) scenarios

» Relative error decreases for low model variance and increases for
high model variance

> Note that ITM option converges to positive intrinsic value if
variance decreases



AMC methods are compared for scenarios of seed, #
paths, as well as AMC regression properties |

Pseudo-Bermudan option with hold value regression (left) vs.
exercise decision only regression (right)

|Num/An-1]

1072

1074

— seed=0
—— seed=1
— seed=2
— seed=3
—— seed=4

-3 | — seed=0

—— seed=1
—— seed=2
— seed=3
—— seed=4

104

102 10° 104 10°

> Regression on exercise decision only does not work in this case.




AMC methods are compared for scenarios of seed, #
paths, as well as AMC regression properties |l

Bermudan option with hold value regression (left) vs. exercise
decision only regression (right)

100

— seed=0

—— seed=1
— seed=2
— seed=3
1071 —— seed=4 1071
-2

103 3 | — seed=0

—— seed=1
— seed=2
— seed=3
— seed=4

|Num/An-1]
=
5

nPaths nPaths

> Regression on exercise decision only does not work in this case.



AMC methods are compared for scenarios of seed, #
paths, as well as AMC regression properties Il

Bermudan option with max. polynomial degree 1 (left) vs. 6
(right) - default is 3

100
— seed=0

102 < 102
3
2

|Num/An-1]

3 | — seed=0 1073
—— seed=1
— seed=2
— seed=3
— seed=4

104 10°

nPaths nPaths

» Too small polynomial degree prevents convergence.
> Very high polynomial degree does not improve accuracy.



AMC methods are compared for scenarios of seed, #
paths, as well as AMC regression properties |V

Bermudan option with co-terminal swap rate basis and max.
polynomial degree 1 (left) vs. 3 (right)

100

1072

| Num /An-1]

1074

5| — seed=0

—— seed=1
—— seed=2
—— seed=3
—— seed=4

104

102 10° 104 10°

» Too small polynomial degree prevents convergence.




AMC methods are compared for scenarios of seed, #
paths, as well as AMC regression properties V

Bermudan option with co-terminal swap rate and Libor rate
basis (max. polynomial degree 3)

1077

| Num /An-1]

1074

nPaths

» Similar result as for other basis functions.
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