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Why do we need sensitivities?

Consider a (differentiable) pricing model V = V (p) based on some input
parameter p. Sensitivity of V w.r.t. changes in p is

V ′(p) =
dV (p)

dp
.

▶ Hedging and risk management.

▶ Market risk measurement.

▶ Many more applications for accounting, regulatory reporting, ...

Sensitivity calculation is a crucial function for banks and financial
institutions.
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Derivative pricing is based on hedging and risk replication
Recall fundamental derivative replication result

V (t) = V (t, X (t)) = φ(t)¦X (t) for all t ∈ [0, T ],

▶ V (t) price of a contingent claim,

▶ φ(t) permissible trading strategy,

▶ X (t) assets in our market.

How do we find the trading strategy?

Consider portfolio π(t) = V (t, X (t)) − φ(t)¦X (t) and apply Ito’s lemma

dπ(t) = µπ · dt + [∇X π(t)]
¦ · σ¦

X dW (t).

From replication property follows dπ(t) = 0 for all t ∈ [0, T ]. Thus, in
particular

0 = ∇X π(t) = ∇X V (t, X (t)) − φ(t).

This gives Delta-hedge

φ(t) = ∇X V (t, X (t)).
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Market risk calculation relies on accurate sensitivities (1/2)

Consider portfolio value π(t), time horizon ∆t and returns

∆π(t) = π(t) − π(t − ∆t).

Market risk measure Value at Risk (VaR) is the lower quantile q of
distribution of portfolio returns ∆π(t) given a confidence level 1 − α,
formally

VaRα = inf {q s.t.P {∆π(t) f q | π(t)} > α} .

Delta-Gamma VaR calculation method consideres π(t) = π (X (t)) in
terms of risk factors X (t) and approximates

∆π ≈ [∇X π (X )]
¦

∆X +
1

2
∆X¦ [HX π (X )] ∆X .
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Market risk calculation relies on accurate sensitivities (2/2)

∆π ≈ [∇X π (X )]
¦

∆X +
1

2
∆X¦ [HX π (X )] ∆X .

▶ VaR is calculated based on joint distribution of risk factor returns
∆X = X (t + ∆t) − X (t) and sensitivities ∇X π (gradient ) and HX π

(Hessian).

▶ Bank portfolio π may consist of linear instruments (e.g. swaps),
Vanilla options (e.g. European swaptions) and exotic instruments
(e.g. Bermudans).

▶ Common interest rate risk factors are FRA rates, par swap rates,
ATM volatilities.
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Sensitivity specification needs to take into account data
flow and dependencies

Depending on context, risk factors can be market parameters or model
parameters.
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In practice, sensitivities are scaled relative to pre-defined
risk factor shifts

Scaled sensitivity ∆V becomes

∆V =
dV (p)

dp
· ∆p ≈ V (p + ∆p) − V (p).

Typical scaling (or risk factor shift sizes) ∆p are

▶ 1bp for interest rate shifts,

▶ 1bp for implied normal volatilities,

▶ 1% for implied lognormal or shifted lognormal volatilities.
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Par rate Delta and Gamma are sensitivity w.r.t. changes in
market rates (1/2)

Bucketed Delta and Gamma
Let R̄ = [Rk ]k=1,...q be the list of market quotes defining the inputs of a
yield curve. The bucketed par rate delta of an instrument with model
price V = V (R̄) is the vector

∆R = 1bp ·
[

∂V

∂R1
, . . . ,

∂V

∂Rq

]

.

Bucketed Gamma is calculated as

ΓR = [1bp]
2 ·

[
∂2V

∂R2
1

, . . . ,
∂2V

∂R2
q

]

.

▶ For multiple projection and discounting yield curves, sensitivities are
calculated for each curve individually.
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Par rate Delta and Gamma are sensitivity w.r.t. changes in
market rates (2/2)

Parallel Delta and Gamma
Parallel Delta and Gamma represent sensitivities w.r.t. simultanous shifts
of all market rates of a yield curve. With 1 = [1, . . . 1]

¦
we get

∆̄R = 1
¦∆R = 1bp ·

∑

k

∂V

∂Rk

≈ V (R̄ + 1bp · 1) − V (R̄ − 1bp · 1)

2
and

Γ̄R = 1
¦ΓR = [1bp]

2 ·
∑

k

∂2V

∂R2
k

≈ V (R̄ +1bp ·1)−2V (R̄)+V (R̄ −1bp ·1).
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Vega is the sensitivity w.r.t. changes in market volatilities
(1/2)

Bucketed ATM Normal Volatility Vega
Denote σ̄ =

[

σ
k,l
N

]

the matrix of market-implied At-the-money normal

volatilites for expiries k = 1, . . . , q and swap terms l = 1, . . . , r .
Bucketed ATM Normal Volatility Vega of an instrument with model price
V = V (σ̄) is specified as

Vega = 1bp ·
[

∂V

∂σ
k,l
N

]

k=1,...,q, l=1,...,r

.
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Vega is the sensitivity w.r.t. changes in market volatilities
(2/2)

Parallel ATM Normal Volatility Vega
Parallel ATM Normal Volatility Vega represents sensitivity w.r.t. a
parallel shift in the implied ATM swaption volatility surface. That is

Vega = 1bp · 1
¦ [Vega] 1

= 1bp ·
∑

k,l

∂V

∂σ
k,l
N

≈ V (σ̄ + 1bp · 1 1
¦) − V (σ̄ − 1bp · 1 1

¦)

2
.

▶ Volatility smile sensitivities are often specified in terms of Vanilla
model parameter sensitivities.

▶ For example, in SABR model, we can calculate sensitivities with
respect to α, β, ρ and ν.
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Crutial part of sensitivity calculation is evaluation or
approximation of partial derivatives

Consider again general pricing function V = V (p) in terms of a scalar
parameter p. Assume differentiability of V w.r.t. p and sensitivity

∆V =
dV (p)

dp
· ∆p.

Finite Difference Approximation
Finite difference approximation with step size h is

dV (p)

dp
≈ V (p + h) − V (p)

h
≈ V (p) − V (p − h)

h
(one-sided), or

dV (p)

dp
≈ V (p + h) − V (p − h)

2h
(two-sided).

▶ Simple to implement and calculate; only pricing function evaluation.

▶ Typically used for black-box pricing functions.
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We do a case study for European swaption Vega I
Recall pricing function

V Swpt = Ann(t) · Bachelier
(

S(t), K , σ
√

T − t, φ
)

with

Bachelier (F , K , ν, φ) = ν · [Φ (h) · h + Φ′ (h)] , h =
φ [F − K ]

ν
.

First, analyse Bachelier formula. We get

d

dν
Bachelier (ν) =

Bachelier (ν)

ν
+ ν

[

(Φ′ (h) h + Φ (h))
dh

dν
− Φ′ (h) h

dh

dν

]

=
Bachelier (ν)

ν
+ νΦ (h)

dh

dν
.

With dh
dν

= − h
ν

follows

d

dν
Bachelier (ν) = Φ (h) · h + Φ′ (h) − Φ (h) · h = Φ′ (h) .
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We do a case study for European swaption Vega II

Moreover, second derivative (Volga) becomes

d2

dν2
Bachelier (ν) = −hΦ′ (h)

dh

dν
=

h2

ν
Φ′ (h) .

This gives for ATM options with h = 0 that

▶ Volga d2

dν2 Bachelier (ν) = 0.

▶ ATM option price is approximately linear in volatility ν.

Differentiating once again yields (we skip details)

d3

dν3
Bachelier (ν) =

(
h2 − 3

) h2

ν2
Φ′ (h) .

It turns out that Volga has a maximum at moneyness

h = ±
√

3.
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We do a case study for European swaption Vega III

Swaption Vega becomes

d

dσ
V Swpt = An(t) · d

dν
Bachelier (ν) ·

√
T − t.

Test case

▶ Rates flat at 5%, implied normal volatilities flat at 100bp.

▶ 10y into 10y European payer swaption (call on swap rate).

▶ Strike at 5% + 100bp · √
10y ·

√
3 = 10.48% (maximizing Volga).
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What is the problem with finite difference approximation? I

▶ There is a non-trivial trade-off between convergence and numerical
accuracy.

▶ We have analytical Vega formula from Bachelier formula and implied
normal volatility

Vega = An(t) · Φ′ (h) ·
√

T − t.

▶ Compare one-sided (upward and downward) and two-sided finite
difference approximation VegaFD using
▶ Bachelier formula,
▶ Analytical Hull-White coupon bond option formula,
▶ Hull-White model via PDE solver (Crank-Nicolson, 101 grid points, 3

stdDevs wide, 1m time stepping),
▶ Hull-White model via density integration (C2-spline exact with

break-even point, 101 grid points, 5 stdDevs wide).

▶ Compare absolute relative error (for all finite difference
approximations)

|RelErr| =

∣
∣
∣
∣

VegaFD

Vega
− 1

∣
∣
∣
∣
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What is the problem with finite difference approximation?
II

Optimal choice of FD step size h is very problem-specific and depends on
discretisation of numerical method.
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Derivative pricing usually involves model calibration (1/2)

Consider swap pricing function V Swap as a function of yield curve model
parameters z , i.e.

V Swap = V Swap(z).

Model parameters z are itself derived from market quotes R for par swaps
and FRAs. That is

z = z(R).

This gives mapping

R 7→ z 7→ V Swap = V Swap (z(R)) .

Interest rate Delta becomes

∆R = 1bp · dV Swap

dz
(z(R))

︸ ︷︷ ︸

Pricing

· dz

dR
(R)

︸ ︷︷ ︸

Calibration

.
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Derivative pricing usually involves model calibration (2/2)

∆R = 1bp · dV Swap

dz
(z(R))

︸ ︷︷ ︸

Pricing

· dz

dR
(R)

︸ ︷︷ ︸

Calibration

.

▶ Suppose a large portfolio of swaps:

▶ Calibration Jacobian dz(R)
dR

is the same for all swaps in portfolio.

▶ Save computational effort by pre-calculating and storing Jacobian.

▶ Brute-force finite difference approximation of Jacobian may become
inaccurate due to numerical scheme for calibration/optimisation.
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Can we calculate calibration Jacobian more efficiently?

Theorem (Implicit Function Theorem)
Let H : Rq × R

r → R
q be a continuously differentiable function with

H(z̄ , R̄) = 0 for some pair (z̄ , R̄). If the Jacobian

Jz =
dH
dz

(z̄ , R̄)

is invertible, then there exists an open domain U ¢ R
r with R̄ ∈ U and a

continuously differentiable function g : U → R
q with

H (g(R), R) = 0 ∀R ∈ U .

Moreover, we get for the Jacobian of g that

dg(R)

dR
= −

[
dH
dz

(g(R), R)

]−1 [
dH
dR

(g(R), R)

]

.

Proof.
See Analysis.
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How does Implicit Function Theorem help for sensitivity
calculation? (1/4)

▶ Consider H(z , R) the q-dimensional objective function of yield curve
calibration problem:
▶ z = [z1, . . . , zq]¦ yield curve parameters (e.g. zero rates or forward

rates),
▶ R = [R1, . . . , Rq]¦ market quotes (par rates) for swaps and FRAs,
▶ use same number of market quotes as model parameters, i.e. r = q.

▶ Reformulate calibration helpers slightly such that

Hk(z , R) = ModelRatek(z) − Rk .

▶ For example, for swap rate helpers, model-implied par swap rate
becomes

ModelRatek(z) =

∑mk

j=1 Lδ(0, T̃j−1, T̃j−1 + δ) · τ̃j · P(t, T̃j)
∑nk

i=1 τi · P(0, Ti)
.
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How does Implicit Function Theorem help for sensitivity
calculation? (2/4)

Suppose pair (z̄ , R̄) solves calibration problem H(z̄ , R̄) = 0 and dH

dz
(z̄ , R̄)

is invertible.
Then, by Implicit Function Theorem, there exists a function

z = z(R)

in a vicinity of R̄ and

dz

dR
(R) = −

[
dH
dz

(g(R), R)

]−1 [
dH
dR

(g(R), R)

]

.
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How does Implicit Function Theorem help for sensitivity
calculation? (3/4)

dz

dR
(R) = −

[
dH
dz

(g(R), R)

]−1 [
dH
dR

(g(R), R)

]

.

From reformulated calibration helpers we get

dH
dz

(g(R), R) =






d
dz

ModelRate1(z)
...

d
dz

ModelRateq(z)




 , and

dH
dR

(g(R), R) =






−1
. . .

−1




 .

Consequently

dz

dR
(R) =

[
dH
dz

(g(R), R)

]−1

=






d
dz

ModelRate1(z)
...

d
dz

ModelRateq(z)






−1

.
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How does Implicit Function Theorem help for sensitivity
calculation? (4/4)

We get Jacobian method for risk calculation

∆R = 1bp · dV Swap

dz
(z(R))

︸ ︷︷ ︸

Pricing

·






d
dz

ModelRate1(z)
...

d
dz

ModelRateq(z)






−1

︸ ︷︷ ︸

Calibration

.

▶ Requires only sensitivities w.r.t. model parameters.

▶ Reference market intruments/rates Rk can also be chosen
independent of original calibration problem.

▶ Calibration Jacobian and matrix inversion can be pre-computed and
stored.
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We can also adapt Jacobian method to Vega calculation
(1/3)

Bermudan swaption is determined via mapping

[

σ1
N , . . . σk̄

N

]

︸ ︷︷ ︸

market-impl. normal vols

7→
[

σ1, . . . σk̄
]

︸ ︷︷ ︸

HW short rate vols

7→ V Berm.

Assign volatility calibration helpers

Hk (σ, σN) = V CBO
k (σ)

︸ ︷︷ ︸

Model[σ]

− V
Swpt
k (σk

N)
︸ ︷︷ ︸

Market(σk
N)

.

▶ V CBO
k (σ) Hull-White model price of kth co-terminal European

swaption represented as coupon bond option.

▶ V
Swpt
k (σk

N) Bachelier formula to calculate market price for kth
co-terminal European swaption from given normal volatility σk

N .
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We can also adapt Jacobian method to Vega calculation
(2/3)

Implicit Function Theorem yields

dσ

dσN

= −
[

dH
dσ

(σ (σN) , σN)

]−1 [
dH
dσN

(σ (σN) , σN)

]

=

[
d

dσ
Model[σ]

]−1







d
dσN

V
Swpt
1 (σ1

N)
. . .

d
dσN

V
Swpt

k̄
(σk̄

N)







.

▶ d
dσ

Model[σ] are Hull-White model Vega(s) of co-terminal European
swaptions.

▶ d
dσN

V
Swpt
k (σk

N) are Bachelier or market Vega(s) of co-terminal
European swaptions.
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We can also adapt Jacobian method to Vega calculation
(3/3)

Bermudan Vega becomes

d

dσN

V Berm =
d

dσ
V Berm ·

[
d

dσ
Model[σ]

]−1

· d

dσN

Market
(
σk

N

)
.
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What is the idea behind Algorithmic Differentiation (AD)

▶ AD covers principles and techniques to augment computer models or
programs.

▶ Calculate sensitivities of output variables with respect to inputs of a
model.

▶ Compute numerical values rather than symbolic expressions.

▶ Sensitivities are exact up to machine precision (no
rounding/cancellation errors as in FD).

▶ Apply chain rule of differentiation to operations like +, *, and
intrinsic functions like exp(.).
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Functions are represented as Evaluation Procedures
consisting of a sequence of elementary operations

Example: Black Formula

Black(·) = ω [FΦ(ωd1) − KΦ(ωd2)]

with d1,2 = log(F/K)

σ
√

τ
± σ

√
τ

2

▶ Inputs F , K , σ, τ

▶ Discrete parameter ω ∈ {−1, 1}

▶ Output Black(·)

v−3 = x1 = F

v−2 = x2 = K

v−1 = x3 = σ
v0 = x4 = τ
v1 = v−3/v−2 ≡ f1(v−3, v−2)
v2 = log(v1) ≡ f2(v1)
v3 =

√
v0 ≡ f3(v0)

v4 = v−1 · v3 ≡ f4(v−1, v3)
v5 = v2/v4 ≡ f5(v2, v4)
v6 = 0.5 · v4 ≡ f6(v4)
v7 = v5 + v6 ≡ f7(v5, v6)
v8 = v7 − v4 ≡ f8(v7, v4)
v9 = ω · v7 ≡ f9(v7)
v10 = ω · v8 ≡ f10(v8)
v11 = Φ(v9) ≡ f11(v9)
v12 = Φ(v10) ≡ f12(v10)
v13 = v−3 · v11 ≡ f13(v−3, v11)
v14 = v−2 · v12 ≡ f14(v−2, v12)
v15 = v13 − v14 ≡ f15(v13, v14)
v16 = ω · v15 ≡ f16(v15)
y1 = v16
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Alternative representation is Directed Acyclic Graph (DAG)

v−3 = x1 = F

v−2 = x2 = K

v−1 = x3 = σ
v0 = x4 = τ
v1 = v−3/v−2 ≡ f1(v−3, v−2)
v2 = log(v1) ≡ f2(v1)
v3 =

√
v0 ≡ f3(v0)

v4 = v−1 · v3 ≡ f4(v−1, v3)
v5 = v2/v4 ≡ f5(v2, v4)
v6 = 0.5 · v4 ≡ f6(v4)
v7 = v5 + v6 ≡ f7(v5, v6)
v8 = v7 − v4 ≡ f8(v7, v4)
v9 = ω · v7 ≡ f9(v7)
v10 = ω · v8 ≡ f10(v8)
v11 = Φ(v9) ≡ f11(v9)
v12 = Φ(v10) ≡ f12(v10)
v13 = v−3 · v11 ≡ f13(v−3, v11)
v14 = v−2 · v12 ≡ f14(v−2, v12)
v15 = v13 − v14 ≡ f15(v13, v14)
v16 = ω · v15 ≡ f16(v15)
y1 = v16

v
−1

v4

v6

v7

v8

v10

v
−3

v12

v14v13

v11

v1

v2

v5

v9

v15

v16

v0

v3

v
−2
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Evaluation Procedure can be formalized to make it more
tractable

Definition (Evaluation Procedure)
Suppose F : Rn → R

m and fi : Rni → R
mi . The relation j z i denotes

that vi ∈ R depends directly on vj ∈ R. If for all x ∈ R
n and y ∈ R

m

with y = F (x) holds that

vi−n = xi i = 1, . . . , n

vi = fi(vj)jzi i = 1, . . . , l

ym−i = vl−i i = m − 1, . . . , 0,

then we call this sequence of operations an evaluation procedure of F

with elementary operations fi . We assume differentiability of all
elementary operations fi (i = 1, . . . , l). Then the resulting function F is
also differentiable.

▶ Abbreviate ui = (vj)jzi ∈ R
ni the collection of arguments of the

operation fi .

▶ Then we may also write
vi = fi(ui).
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Forward mode of AD calculates tangents (1/2)

▶ In addition to function evaluation vi = fi(ui) evaluate derivative

v̇i =
∑

jzi

∂

∂vj

fi(ui) · v̇j .

Forward Mode or Tangent Mode of AD
Use abbreviations u̇i = (v̇j)jzi and ḟi(ui , u̇i) = f ′

i (ui) · u̇i . The Forward
Mode of AD is the augmented evaluation procedure

[vi−n, v̇i−n] = [xi , ẋi ] i = 1, . . . , n

[vi , v̇i ] =
[
fi(ui), ḟi(ui , u̇i)

]
i = 1, . . . , l

[ym−i , ẏm−i ] = [vl−i , v̇l−i ] i = m − 1, . . . , 0.

Here, the initializing derivative values ẋi−n for i = 1 . . . n are given and
determine the direction of the tangent.
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Forward mode of AD calculates tangents (2/2)

▶ With ẋ = (ẋi) ∈ R
n and ẏ = (ẏi) ∈ R

m, the forward mode of AD
evaluates

ẏ = F ′(x)ẋ .

▶ Computational effort is approx. 2.5 function evaluations of F .
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Black formula Forward Mode evaluation procedure...

v−3 = x1 = F v̇−3 = 0
v−2 = x2 = K v̇−2 = 0
v−1 = x3 = σ v̇−1 = 1
v0 = x4 = τ v̇0 = 0
v1 = v−3/v−2 v̇1 = v̇−3/v−2 − v1 · v̇−2/v−2

v2 = log(v1) v̇2 = v̇1/v1

v3 =
√

v0 v̇3 = 0.5 · v̇0/v3

v4 = v−1 · v3 v̇4 = v̇−1 · v3 + v−1 · v̇3

v5 = v2/v4 v̇5 = v̇2/v4 − v5 · v̇4/v4

v6 = 0.5 · v4 v̇6 = 0.5 · v̇4

v7 = v5 + v6 v̇7 = v̇5 + v̇6

v8 = v7 − v4 v̇8 = v̇7 − v̇4

v9 = ω · v7 v̇9 = ω · v̇7

v10 = ω · v8 v̇10 = ω · v̇8

v11 = Φ(v9) v̇11 = φ(v9) · v̇9

v12 = Φ(v10) v̇12 = φ(v10) · v̇10

v13 = v−3 · v11 v̇13 = v̇−3 · v11 + v−3 · v̇11

v14 = v−2 · v12 v̇14 = v̇−2 · v12 + v−2 · v̇12

v15 = v13 − v14 v̇15 = v̇13 − v̇14

v16 = ω · v15 v̇16 = ω · v̇15

y1 = v16 ẏ1 = v̇16
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Reverse Mode of AD calculates adjoints (1/3)

▶ Forward Mode calculates derivatives and applies chain rule in the
same order as function evaluation.

▶ Reverse Mode of AD applies chain rule in reverse order of function
evaluation.

▶ Define auxiliary derivative values v̄j and assume initialisation v̄j = 0
before reverse mode evaluation.

▶ For each elementary operation fi and all intermediate variables vj

with j z i , evaluate

v̄j + = v̄i · ∂

∂vj

fi(ui).

▶ In other words, for each arguments of fi the partial derivative is
derived.
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Reverse Mode of AD calculates adjoints (2/3)

Reverse Mode or Adjoint Mode of AD
Denoting ūi = (v̄j)jzi ∈ R

ni and f̄i(ui , v̄i) = v̄i · f ′
i (ui), the incremental

reverse mode of AD is given by the evaluation procedure

vi−n = xi i = 1, . . . , n

vi = fi(vj)jzi i = 1, . . . , l

ym−i = vl−i i = m − 1, . . . , 0
v̄i = ȳi i = 0, . . . , m − 1

ūi + = f̄i(ui , v̄i) i = l , . . . , 1
x̄i = v̄i i = n, . . . , 1.

Here, all intermediate variables vi are assigned only once. The initializing
values ȳi are given and represent a weighting of the dependent variables
yi .
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Reverse Mode of AD calculates adjoints (3/3)

▶ Vector ȳ = (ȳi) can also be interpreted as normal vector of a
hyperplane in the range of F .

▶ With ȳ = (ȳi) and x̄ = (x̄i), reverse mode of AD yields

x̄T = ∇
[
ȳT F (x)

]
= ȳT F ′(x).

▶ Computational effort is approx. 4 function evaluations of F .
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Black formula Reverse Mode evaluation procedure ... I

v−3 = x1 = F

v−2 = x2 = K

v−1 = x3 = σ
v0 = x4 = τ

v1 = v−3/v−2

v2 = log(v1)
v3 =

√
v0

v4 = v−1 · v3

v5 = v2/v4

v6 = 0.5 · v4

v7 = v5 + v6

v8 = v7 − v4

v9 = ω · v7

v10 = ω · v8

v11 = Φ(v9)
v12 = Φ(v10)

v13 = v−3 · v11

v14 = v−2 · v12

v15 = v13 − v14

v16 = ω · v15

y1 = v16

v̄16 = ȳ1 = 1
.
.
.
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Black formula Reverse Mode evaluation procedure ... II
...
y1 = v16

v̄16 = ȳ1 = 1
v̄15 += ω · v̄16

v̄13 += v̄15; v̄14 += (−1) · v̄15

v̄−2 += v12 · v̄14; v̄12 += v−2 · v̄14

v̄−3 += v11 · v̄13: v̄11 += v−3 · v̄13

v̄10 += φ(v10) · v̄12

v̄9 += φ(v9) · v̄11

v̄8 += ω · v̄10

v̄7 += ω · v̄9

v̄7 += v̄8; v̄4 += (−1) · v̄8

v̄5 += v̄7; v̄6 += v̄7

v̄4 += 0.5 · v̄6

v̄2 += v̄5/v4; v̄4 += (−1) · v5 · v̄5/v4

v̄−1 += v3 · v̄4; v̄3 += v−1 · v̄4

v̄0 += 0.5 · v̄3/v3

v̄1 += v̄2/v1

v̄−3 += v̄1/v−2; v̄−2 += (−1) · v1 · v̄1/v−2

τ̄ = x̄4 = v̄0

σ̄ = x̄3 = v̄−1

K̄ = x̄2 = v̄−2

F̄ = x̄1 = v̄−3
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We summarise the properties of Forward and Reverse Mode

Forward Mode

ẏ = F
′(x)ẋ

▶ Approx. 2.5 function
evaluations.

▶ Computational effort
independent of number of output
variables (dimension of y).

▶ Chain rule in same order as
computation.

▶ Memory consumption in order of
function evaluation.

Reverse Mode

x̄
T = ȳ

T
F

′(x)

▶ Approx. 4 function evaluations.

▶ Computational effort
independent of number of input
variables (dimension of x).

▶ Chain rule in reverse order of
computation.

▶ Requires storage of all
intermediate results (or
re-computation).

▶ Memory
consumption/management key
challange for implementations.

▶ Computational effort can be improved by AD vector mode.

▶ Reverse Mode memory consumption can be managed via
checkpointing techniques.
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How is AD applied in practice?
▶ Typically, you don’t want to differentiate all your source code by

hand.
▶ Tools help augmenting existing programs for tangent and adjoint

computations.

Source Code Transformation
▶ Applied to the model code in

compiler fashion.

▶ Generate AD model as new
source code.

▶ Original code may need to be
adapted slightly to meet
capabilities of AD tool.

Operator Overloading
▶ provide new (active) data

type.

▶ Overload all relevant
operators/ functions with
sensitivity aware arithmetic.

▶ AD model derived by changing
intrinsic to active data type.

Some example C++ tools:
ADIC2, dcc, TAPENADE ADOL-C, dco/c++,

ADMB/AUTODIF

▶ There are also tools for Python and other lamguages:

More details at autodiff.org

autodiff.org
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There is quite some literature on AD and its application in
finance

Standard textbook on AD:

▶ A. Griewank and A. Walther. Evaluating derivatives: principles and

techniques of algorithmic differentiation - 2nd ed.

SIAM, 2008

Recent practitioner’s textbook:

▶ U. Naumann. The Art of Differentiating Computer Programs: An

Introduction to Algorithmic Differentiation.
SIAM, 2012

One of the first and influencial papers for AD application in finance:

▶ M. Giles and P. Glasserman. Smoking adjoints: fast monte carlo
greeks.
Risk, January 2006
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Part VIII

Wrap-up
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Outline
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What was this lecture about?

Interbank swap deal example

Bank A may decide to early terminate deal in 10, 11, 12,.. years

Trade details (fixed rate, notional, etc.)

Date calculations
Market conventions

Stochastic interest rates

Optionalities



Outline
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