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Part V

Bermudan Swaption Pricing
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Let’s have another look at the cancellation option

Interbank swap deal example

Bank A may decide to early terminate deal in 10, 11, 12,..years.
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What does such a Bermudan call right mean?
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[Bermudan cancellable swap] = [full swap] + [Bermudan option on opposite swap]
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What is a Bermudan swaption?
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Bermudan swaption
A Bermudan swaption is an option to enter into a Vanilla swap with fixed
rate K and final maturity Tn at various exercise dates T 1

E , T 2
E , . . . , T k̄

E . If
there is only one exercise date (i.e. k̄ = 1) then the Bermudan swaption
equals a European swaption.



p. 368

A Bermudan swaption can be priced via backward

induction

-

continuation value
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A Bermudan swaption can be priced via backward

induction - let’s add some notation
H3 = 0

U3

V3 = max{U3, H3}

H2 = . . .

U2

V2 = max{U2, H2}

H1 = . . .

U1

V1 = max{U1, H1}

H0 = B(t)E

[
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B(T1
E

)
| Ft
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First we specify the future payoff cash flows
▶ Choose a numeraire B(t) and corresponding cond. expectations

Et [·] = E[· | Ft ].
▶ Underlying payoff Uk if option is exercised

Uk

= B(T k
E )

∑

Ti gT k
E

ET k
E

[
Xi(Ti)

B(Ti)

]

= B(T k
E )




∑

Ti gT k
E

KτiP(T k
E , Ti) −

∑

T̃j gT k
E

L¶(T k
E , T̃j−1, T̃j−1 + δ)τ̃jP(T k

E , T̃j)





︸ ︷︷ ︸

future fixed leg minus future float leg

= B(T k
E )




∑

Ti gT k
E

KτiP(T k
E , Ti) −

[
P(T k

E , T̃jk ) − P(T k
E , T̃m)

]

−
∑

T̃j gT k
E

P(T k
E , T̃j−1)

[
D(T̃j−1, T̃j) − 1

]



 .
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Then we specify the continuation value and optimal
exercise (1/2)

▶ Continuation value Hk(t) (T k
E f t f T k+1

E ) represents the time-t
value of the remaining option if not exercised.

▶ Option becomes worthless if not exercised at last exercise date T k̄
E .

Thus last continuation value Hk̄(T k̄
E ) = 0.

▶ Recall that Bermudan option gives the right but not the obligation
to enter into underlying at exercise.

▶ Rational agent will choose the maximum of payoff and continuation
at exercise, i.e.

Vk = max
{

Uk , Hk(T k
E )

}
.
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Then we specify the continuation value and optimal
exercise (2/2)

Vk = max
{

Uk , Hk(T k
E )

}
.

▶ Vk represents the Bermudan option value at exercise T k
E . Thus we

also must have for the continuation value

Hk−1(T k
E ) = Vk .

▶ Derivative pricing formula yields

Hk−1(T k−1
E ) = B(T k−1

E ) · E
T

k−1
E

[
Hk−1(T k

E )

B(T k
E )

]

= B(T k−1
E ) · E

T
k−1
E

[
Vk

B(T k
E )

]

.
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We summarize the Bermudan pricing algorithm

Backward induction for Bermudan options
Consider a Bermudan option with k̄ exercise dates T k

E (k = 1, . . . k̄) and
underlying future payoffs with (time-T k

E ) prices Uk .

Denote Hk(t) the option’s continuation value for T k
E f t f T k+1

E and set

Hk̄

(

T k̄
E

)

= 0. Also set T 0
E = t (i.e. pricing time today).

The option price can be derived via the recursion

Hk

(
T k

E

)
= B(T k

E ) · ET k
E

[

Hk(T k+1
E )

B(T k+1
E )

]

= B(T k
E ) · ET k

E

[

max
{

Uk+1, Hk+1(T k+1
E )

}

B(T k+1
E )

]

.

for k = k̄ − 1, . . . , 0. The Bermudan option price is given by

V Berm(t) = H0(t) = H0(T 0
E ).
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Some more comments regarding Bermudan pricing ...
▶ Recursion for Bermudan pricing can be formally derived via theory of

optimal stopping and Hamilton-Jacobi-Bellman (HJB) equation.

▶ For more details, see Sec. 18.2.2 in Andersen/Piterbarg (2010).

▶ For a single exercise date k̄ = 1 we get

H0(t) = B(t) · Et

[
max {U1, 0)}

B(T 1
E )

]

.

This is the general pricing formula for a European swaption (if U1

represents a Vanilla swap).

▶ In principle, recursion Hk

(
T k

E

)
= B(T k

E ) · ET k
E

[
max{Uk+1,Hk+1(T k+1

E
)}

B(T k+1
E

)

]

holds for any payoffs Uk . However, computation

Uk = B(T k
E )

∑

Ti gT k
E

ET k
E

[
Xi(Ti)

B(Ti)

]

might pose additional challenges if cash flows Xi(Ti) are more
complex.
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How do we price a Bermudan in practice?

▶ In principle, recursion algorithm for Hk() is straight forward.

▶ Computational challenge is calculating conditional expectations

Hk

(
T k

E

)
= B(T k

E ) · ET k
E

[

max
{

Uk+1, Hk+1(T k+1
E )

}

B(T k+1
E )

]

.

▶ Note, that this problem is an instance of the general option pricing
problem

V (T0) = B(T0) · E
[

V (T1)

B(T1)
| FT0

]

.

We can apply general option pricing methods to roll-back the Bermudan
payoff.
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Note that Uk , Vk and Hk depend on underlying state
variable x(T k

E )
H3 = 0

U3

V3 = max{U3, H3}

H2 = . . .

U2
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H1 = . . .
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)
| Ft

]
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Typically we need to discretise variables Uk , Vk and Hk on
a grid of underlying state variables

Forthcomming, we discuss several methods to roll-back the payoffs.
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Outline
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Key idea is using the conditional density function in the
Hull-White model

Recall that

V (T0) = B(T0) · E
[

V (T1)

B(T1)
| FT0

]

.

We choose the T1-maturing zero coupon bond P(t, T1) as numeraire.
Then

V (T0) = P(T0, T1) · ET1 [V (T1) | FT0
]

= P(x(T0); T0, T1) ·
∫ +∞

−∞

V (x ; T1) · pµ,Ã2(x) · dx .

State variable x = x(T1) is normally distributed with known mean and
variance.
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Hull-White model results yield density parameters of the
state variable x(T1)

V (T0) = P(x(T0); T0, T1) ·
∫ +∞

−∞

V (x ; T1) · pµ,Ã2(x) · dx .

State variable x = x(T1) is normally distributed with mean

µ = E
T1 [x(T1) | FT0

] = G ′(T0, T1) [x(T0) + G(T0, T1)y(T0)]

and variance

σ2 = Var [x(T1) | FT0
] = y(T1) − G ′(T0, T1)2y(T0).

Thus

pµ,Ã2(x) =
1√

2πσ2
· exp

{

− (x − µ)
2

2σ2

}

and

V (T0) = P(x(T0); T0, T1) ·
∫ +∞

−∞

V (x ; T1)√
2πσ2

· exp

{

− (x − µ)
2

2σ2

}

dx .
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Integral against normal density needs to be computed
numerically by quadrature methods

V (T0) = P(x(T0); T0, T1) ·
∫ +∞

−∞

V (x ; T1)√
2πσ2

· exp

{

− (x − µ)
2

2σ2

}

dx .

▶ We can apply general purpose quadrature rules to function

f (x) =
V (x ; T1)√

2πσ2
· exp

{

− (x − µ)
2

2σ2

}

.

▶ Select a grid [x0, . . . , xN ] and approximate e.g. via
▶ Trapezoidal rule

∫ +∞

−∞

f (x) · dx ≈

N∑

i=1

1

2
[f (xi−1) + f (xi )] (xi − xi−1)

▶ or Simpson’s rule with equidistant grid (h = xi − xi−1) and even
sub-intervalls, then

∫ +∞

−∞

f (x)·dx ≈

h

3
·

[

f (x0) + 2

N/2−1
∑

j=1

f (x2j) + 4

N/2
∑

j=1

f (x2j−1) + f (xN)

]

.
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There are some details that need to be considered - Select
your integration domain carefully

▶ Infinite integral is approximated by definite integral

∫ +∞

−∞

f (x) · dx ≈
∫ xN

x0

f (x) · dx ≈ · · · .

▶ Finite integration boundaries need to be chosen carefully by taking
into account variance of x(t).

▶ One approach is calculating variance to option expiry T1,
σ̂2 = Var [x(T )] = y(T1) and set

x0 = −λ · σ̂ and xN = λ · σ̂.

▶ Note, that ET1 [x(T1)] = 0, thus we do not apply a shift to the
x -grid.
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There are some details that need to be considered - Take
care of the break-even point

▶ Note that convergence of quadrature rules depends on smoothness
of integrand f (x).

▶ Recall that

f (x) = V (x) · pµ,Ã2(x) = max
{

Uk+1(x), Hk+1(x ; T k+1
E )

}
· pµ,Ã2(x).

▶ Max-function is not smooth at Uk+1(x) = Hk+1(x ; T k+1
E ).

Determine x⋆ (via interpolation of Hk+1(·) and numerical root search)
such that

Uk+1(x⋆) = Hk+1(x⋆; T k+1
E )

and split integration

∫ +∞

−∞

f (x) · dx =

∫ x⋆

−∞

f (x) · dx +

∫ +∞

x⋆

f (x) · dx .
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Can we exploit the structure of the integrand?

V (T0) = P(x(T0); T0, T1) ·
∫ +∞

−∞

V (x ; T1)√
2πσ2

· exp

{

− (x − µ)
2

2σ2

}

dx .

▶ Integral against normal distribution density can be solved more
efficiently:

1. Use Gauss–Hermite quadrature.

2. Interpolate only V (x ; T1) by cubic spline and integrate exact.
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Gauss–Hermite quadrature is an efficient integration
method for smooth integrands

▶ Gauss–Hermite quadrature is a particular form of Gaussian
quadrature.

▶ Choose a degree parameter d , and approximate

∫ +∞

−∞

f (x) · e−x2

dx ≈
d∑

k=1

wk · f (xk)

with xk (i = 1, 2, ..., d) being the roots of the physicists’ version of
the Hermite polynomial Hd(x) and wk are weights with

wk =
2d−1d!

√
π

d2 [Hd−1(xk)]
2 .

▶ Roots and weights can be obtained, e.g. via stored values and
look-up tables.
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Variable transformation allows application of
Gauss–Hermite quadrature to Hull-White model integration

We get

∫ +∞

−∞

V (x ; T1)√
2πσ2

· exp

{

− (x − µ)
2

2σ2

}

dx

=
1√
π

∫ +∞

−∞

V (
√

2σx + µ; T1) · e−x2

dx

≈ 1√
π

d∑

k=1

wk · V (
√

2σxk + µ; T1).

Some constraints need to be considered:

▶ Payoff V (·, T1) is only available on the x -grid at T1, thus V (·, T1)
needs to be interpolated.

▶ Gauss-Hermite quadrature does not take care of non-smooth payoff
at break-even state x⋆, thus d needs to be sufficiently large to
mitigate impact.
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If we apply cubic spline interpolation anyway then we can
also integrate exactly

Approximate V (·, T1) via cubic spline on the grid [x0, . . . xN ] as

V (x , T1) ≈ C(x) =

N−1∑

i=0

1{xi fx<xi+1}

d∑

k=0

ci,k · (x − xi)
k

.

Then

∫ +∞

−∞

V (x ; T1) · pµ,Ã2(x) · dx ≈
N−1∑

i=0

∫ xi+1

xi

d∑

k=0

ci,k · (x − xi)
k · pµ,Ã2(x) · dx

=

N−1∑

i=0

d∑

k=0

ci,k ·
∫ xi+1

xi

(x − xi)
k · pµ,Ã2(x) · dx .

Thus, all we need is

Ii,k =

∫ xi+1

xi

(x − xi)
k · pµ,Ã2(x) · dx .
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We transform variables to make integration easier
First we apply the variable transformation x̄ = (x − µ)/σ. This yields
pµ,Ã2(x) = p0,1(x̄)/σ and

Ii,k =

∫ x̄i+1

x̄i

(σx̄ + µ − xi)
k · p0,1(x̄) · dx

σ

=

∫ x̄i+1

x̄i

σk (x̄ − x̄i)
k · 1√

2π
exp

{

− x̄2

2

}

︸ ︷︷ ︸

standard normal density

dx̄

with the shifted grid points x̄i = (xi − µ)/σ.
Denote Φ(·) the cumulated standard normal distribution function. Then

Φ′(x) =
1√
2π

exp

{

− x̄2

2

}

and Φ′′(x) = −xΦ′(x).

As a sub-step we aim at solving the integral

∫ x̄i+1

x̄i

x̄k · Φ′(x̄) · dx̄ .
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We use cubic splines (d = 3) to keep formulas reasonably
simple I

It turnes out that

F0(x̄) =

∫

Φ′(x̄)dx̄ = Φ(x̄),

F1(x̄) =

∫

x̄Φ′(x̄)dx̄ = −Φ′(x̄),

F2(x̄) =

∫

x̄2Φ′(x̄)dx̄ = Φ(x̄) − x · Φ′(x̄),

F3(x̄) =

∫

x̄3Φ′(x̄)dx̄ = −
(
x̄2 + 2

)
· Φ′(x̄).

This yields for Ii,0

Ii,0 =

∫ x̄i+1

x̄i

Φ′(x̄) · dx = F0(x̄i+1) − F0(x̄i)
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We use cubic splines (d = 3) to keep formulas reasonably
simple II

and for Ii,1

Ii,1 =

∫ x̄i+1

x̄i

σ (x̄ − x̄i) · Φ′(x̄) · dx

= σ ·
∫ x̄i+1

x̄i

x̄ · Φ′(x̄) · dx − σ · x̄i · Ii,0

= σ · [F1(x̄i+1) − F1(x̄i)] − σ · x̄i · Ii,0.
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We use cubic splines (d = 3) to keep formulas reasonably
simple III

We may proceed similarly for Ii,2

Ii,2 =

∫ x̄i+1

x̄i

σ2 (x̄ − x̄i)
2 · Φ′(x̄) · dx

=

∫ x̄i+1

x̄i

σ2
[
x̄2 − 2x̄i x̄ + x̄2

i

]
· Φ′(x̄) · dx

= σ2 [F2(x̄i+1) − F2(x̄i)] − 2σ2x̄i [F1(x̄i+1) − F1(x̄i)] + σ2x̄2
i Ii,0

= σ2 [F2(x̄i+1) − F2(x̄i)] − 2σx̄i [Ii,1 + σ · x̄i · Ii,0] + σ2x̄2
i Ii,0

= σ2 [F2(x̄i+1) − F2(x̄i)] − 2σx̄i Ii,1 − σ2x̄2
i Ii,0
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We use cubic splines (d = 3) to keep formulas reasonably
simple IV

and Ii,3

Ii,3 =

∫ x̄i+1

x̄i

σ3 (x̄ − x̄i)
3 · Φ′(x̄) · dx

=

∫ x̄i+1

x̄i

σ3
[
x̄3 − 3x̄i x̄

2 + 3x̄2
i x̄ − x̄3

i

]
· Φ′(x̄) · dx

= σ3 [F3(x̄i+1) − F3(x̄i)] − 3σ3x̄i [F2(x̄i+1) − F2(x̄i)]

+ 3σ3x̄2
i [F1(x̄i+1) − F1(x̄i)] − σ3x̄3

i Ii,0.

Substituting terms as before yields

Ii,3 = σ3 [F3(x̄i+1) − F3(x̄i)] − 3σx̄i

[
Ii,2 + 2σx̄i Ii,1 + σ2x̄2

i Ii,0
]

+ 3σ2x̄2
i [Ii,1 + σ · x̄i · Ii,0] − σ3x̄3

i Ii,0

= σ3 [F3(x̄i+1) − F3(x̄i)] − 3σx̄i Ii,2 − 3σ2x̄2
i Ii,1 − σ3x̄3

i Ii,0.
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Let’s summarise the formulas...

We get

V (T0) = P(x(T0); T0, T1) ·
∫ +∞

−∞

V (x ; T1) · pµ,Ã2(x) · dx

≈ P(x(T0); T0, T1) ·
N−1∑

i=0

3∑

k=0

ci,k · Ii,k

with

Ii,0 = F0(x̄i+1) − F0(x̄i)

Ii,1 = σ · [F1(x̄i+1) − F1(x̄i)] − σ · x̄i · Ii,0

Ii,2 = σ2 [F2(x̄i+1) − F2(x̄i)] − 2σx̄i Ii,1 − σ2x̄2
i Ii,0

Ii,3 = σ3 [F3(x̄i+1) − F3(x̄i)] − 3σx̄i Ii,2 − 3σ2x̄2
i Ii,1 − σ3x̄3

i Ii,0

and anti-derivative functions Fk(x) as before.
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Integrating a cubic spline versus a normal density function
occurs in various contexts of pricing methods

▶ Method already yields good accuracy for smaller number of grid
points.

▶ For larger number of grid points accuracy benefit compared to e.g.
Simpson integration seems not too much.

▶ Either way, use special treatment of break-even point x⋆.

▶ Computational effort can become significant for larger number of
grid points.

▶ Bermudan pricing requires N2 evaluations of Φ(·) and Φ′(·) per
exercise.
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PDE methods for finance and pricing are extensively
studied in the literature

▶ We present the basic principles and some aspects relevant for
Bermudan bond option pricing.

▶ Further reading:

▶ L. Andersen and V. Piterbarg. Interest rate modelling, volume I to

III.

Atlantic Financial Press, 2010, Sec. 2.

▶ D. Duffy. Finite Difference Methods in Financial Engineering.
Wiley Finance, 2006
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We can adapt the Black-Scholes equation to our
Hull-White model setting

▶ Recall that state variable x(t) follows the risk-neutral dynamics

dx(t) = [y(t) − a · x(t)]
︸ ︷︷ ︸

µ(t,x(t))

dt + σ(t) · dW (t).

▶ Consider an option with price V = V (t, x(t)), option expiry time T
and payoff V (T , x(T )) = g (x(T )).

▶ Derivative pricing formula yields that discounted option price is a
martingale, i.e.

d

(
V (t, x(t))

B(t)

)

= σV (t, x(t)) · dW (t).

How can we use this to derive a PDE?
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Apply Ito’s Lemma to the discounted option price

We get

d

(
V (t, x(t))

B(t)

)

=
dV (t, x(t))

B(t)
+ V (t)d

(
1

B(t)

)

.

With d
(
B(t)−1

)
= −r(t) · B(t)−1 · dt follows

d

(
V (t, x(t))

B(t)

)

=
1

B(t)
[dV (t, x(t)) − r(t) · V (t) · dt] .

Applying Ito’s Lemma to option price V (t, x(t)) gives

dV (t, x(t)) = Vt · dt + Vx · dx(t) +
1

2
Vxx · [dx(t)]

2

=

[

Vt + Vx · µ (t, x(t)) +
1

2
Vxx · σ(t)2

]

dt + Vx · σ(t) · dW (t)

with partial derivatives Vt = ∂V (t, x(t)) /∂t, Vx = ∂V (t, x(t)) /∂x and
Vxx = ∂2V (t, x(t)) /∂x2.
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Combining results yields dynamics of discounted option
price

d

(
V (t, x(t))

B(t)

)

=
1

B(t)

[

Vt + Vx · µ (t, x(t)) +
1

2
Vxx · σ(t)2 − r(t) · V

]

︸ ︷︷ ︸

µV (t,x(t))

dt

+
Vx · σ(t)

B(t)
︸ ︷︷ ︸

ÃV (t,x(t))

·dW (t).

Martingale property of V (t,x(t))
B(t) requires that drift vanishes. That is

µV (t, x(t)) = Vt + Vx · µ (t, x(t)) +
1

2
Vxx · σ(t)2 − r(t) · V = 0.

Substituting µ (t, x(t)) = y(t) − a · x(t) and r(t) = f (0, t) + x(t) yields
pricing PDE.
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We get the parabolic pricing PDE with terminal condition

Theorem (Derivative pricing PDE in Hull-White model)
Consider our Hull-White model setup and a derivative security with price
process V (t, x(t)) that pays at time T the payoff
V (T , x(T )) = g (x(T )). Further assume V (T , x(T )) has finite variance
and is attainable.
Then for t < T the option price

V (t, x(t)) = B(t) · EQ

[
V (T , x(T ))

B(T )
| Ft

]

follows the PDE

Vt(t, x)+[y(t) − a · x ]·Vx (t, x)+
σ(t)2

2
·Vxx (t, x) = [x + f (0, t)]·V (t, x)

with terminal condition
V (T , x) = g(x).

Proof.
Follows from derivation above.
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How does this help for our Bermudan option pricing
problem?

▶ We need option prices on a grid of state variables [x0, . . . xN ]

Solve Hull-White option pricing PDE backwards from exercise to exercise.
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Pricing PDE is typically solved via finite difference scheme
and time integration

▶ Use method of lines (MOL) to solve parabolic PDE:
▶ First discretise state space.

▶ Then integrate resulting system of ODEs with terminal condition in
time-direction.

▶ We discuss basic (or general purpose) approach to solve PDE; for a
detailed treatment see Andersen/Piterbarg (2010) or Duffy (2006).

▶ Some aspects may require special attention in the context of
Hull-White model:
▶ more problem-specific boundary discretisation,

▶ non-equidistant grids with finer grid around break-even state x⋆,

▶ upwinding schemes to deal with potentially dominant impact of
convection term [y(t) − a · x ] · Vx (t, x) at the grid boundaries of x .
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How do we discretise state space?

▶ PDE for V (t, x(t)) is defined on infinite domain (−∞, +∞).
▶ We don’t get explicit boundary conditions from PDE derivation.
▶ Thus, we require payoff-specific approximation.
▶ Finally, we are interested in V (0, 0).

▶ We use equidistant x -grid x0, . . . , xN with grid size hx centered
around zero and scaled via standard deviation of x(T ) at final
maturity T ,

x0 = −λ · σ̂ and xN = λ · σ̂

with σ̂2 = Var [x(T )] = y(T ) and λ ≈ 5.

▶ Why not shift the grid by expectation E [x(T )] (as suggested in the
literature)?
▶ Pricing PDE is independent of pricing measure (used for derivation).
▶ There is no natural measure under which E [x(T )] should be

calculated.
▶ In T -forward measure E

T [x(T )] = 0 anyway.
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Differential operators in state-dimension are discretised via
central finite differences

For now leave time t continuous. We use notation V (·, x).
For inner grid points xi with i = 1, . . . , N − 1

Vx (·, xi) =
V (·, xi+1) − V (·, xi−1)

2hx

+ O(h2
x ) and

Vxx (·, xi) =
V (·, xi+1) − 2V (·, xi) + V (·, xi−1)

h2
x

+ O(h2
x ).

At the boundaries we impose condition

Vxx (·, x0) = λ0 · Vx (·, x0) and Vxx (·, xN) = λN · Vx (·, xN).

This yields one-sided first order partial derivative approximations

Vx (·, x0) ≈ 2 [V (·, x1) − V (·, x0)]

(2 + λ0hx ) hx

and Vx (·, xN) ≈ 2 [V (·, xN) − V (·, xN−1)]

(2 − λNhx ) hx

.
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Some initial comments regarding choice of λ0,N

▶ Often, λ0,N = 0 (also suggested in the literature).

▶ With λ0,N = 0 we have Vxx (·, x0) = Vxx (·, xN) = 0 and

Vx (·, x0) =
V (·, x1) − V (·, x0)

hx

+ O(h2
x ) and

Vx (·, xN) =
V (·, xN) − V (·, xN−1)

hx

+ O(h2
x ).

▶ However, for bond options the choice Vxx (·, x0) = Vxx (·, xN) = 0
might be a poor approximation.

▶ We will discuss an alternative choice for λ0,N later.
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Now consider PDE for each grid point individually
Define the vector-valued function v(t) via

v(t) = [v0(t), . . . , vN(t)]
¦

= [V (t, x0), . . . , V (t, xN)]
¦ ∈ R

N+1.

Then state discretisation yields for inner points xi with i = 1, . . . , N − 1,

v ′
i (t) + [y(t) − axi ]

vi+1(t) − vi−1(t)

2hx

+
σ(t)2

2

vi+1(t) − 2vi(t) + vi−1(t)

h2
x

=

[xi + f (0, t)] vi(t)

and for the boundaries

v ′
0(t) +

[

y(t) − ax0 + λ0
σ(t)2

2

]
2 [v1(t) − v0(t)]

(2 + λ0hx ) hx

= [x0 + f (0, t)] v0(t),

v ′
N(t) +

[

y(t) − axN + λN

σ(t)2

2

]
2 [vN(t) − vN−1(t)]

(2 − λNhx ) hx

= [xN + f (0, t)] vN(t).

As before, we have the terminal condition

vi(T ) = g(xi).

Parabolic PDE is transformed into linear system of ODEs with terminal
condition.
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It is more convenient to write system of ODEs in
matrix-vector notation (1/2)

We get

v ′(t) = M(t) · v(t) =









c0 u0

l1
. . .

. . .
. . .

. . . uN−1

lN cN









· v(t)

with time-dependent inner components ci , li , ui (i = 1, . . . N − 1),

ci =
σ(t)2

h2
x

+ xi + f (0, t),

li = −σ(t)2

2h2
x

+
y(t) − axi

2hx

,

ui = −σ(t)2

2h2
x

− y(t) − axi

2hx

.
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It is more convenient to write system of ODEs in
matrix-vector notation (2/2)

Boundary elements of M(t) become

c0 =
2

[

y(t) − ax0 + λ0
Ã(t)2

2

]

(2 + λ0hx ) hx

+ x0 + f (0, t),

cN = −
2

[

y(t) − axN + λN
Ã(t)2

2

]

(2 − λNhx ) hx

+ x0 + f (0, t),

u0 = −
2

[

y(t) − ax0 + λ0
Ã(t)2

2

]

(2 + λ0hx ) hx

,

lN =
2

[

y(t) − axN + λN
Ã(t)2

2

]

(2 − λNhx ) hx

.



p. 415

Outline

PDE and Finite Differences
Derivative Pricing PDE in Hull-White Model
State Space Discretisation via Finite Differences
Time-integration via θ-Method
Alternative Boundary Conditions for Bond Option Payoffs
Summary of PDE Pricing Method



p. 416

Linear system of ODEs can be solved by standard methods

We have
v ′(t) = f (t, v(t)) = M(t) · v(t).

We demonstrate time discretisation based on θ-method. Consider
equidistant time grid t = t0, . . . , tM = T with step size ht and
approximation

v(tj+1) − v(tj)

ht

≈ f (tj+1 − θht , (1 − θ)v(tj+1) + θv(tj))

for θ ∈ [0, 1].

▶ In general, approximation yields method of order O(ht).

▶ For θ = 1
2 , approximation yields method of order O(h2

t ).

For our linear ODE we set v j = v(tj), M¹ = M(tj+1 − θht) and get the
scheme

v j+1 − v j

ht

= M¹

[
(1 − θ)v j+1 + θv j

]
.
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We get a recursion for the θ-method

Rearranging terms yields

[I + htθM¹] v j = [I − ht (1 − θ) M¹] v j+1.

If [I + htθM¹] is regular then we can solve for v j via

v j = [I + htθM¹]
−1

[I − ht (1 − θ) M¹] v j+1.

Terminal condition is

vM = [g(x0), . . . , g(xN)]
¦

.

▶ Unless θ = 0 (Explicit Euler scheme) we need to solve a linear
equation system.

▶ Fortunately, matrix [I + htθM¹] is tri-diagonal; solution requires
O(M) operations.

▶ θ-method is A-stable for θ g 1
2 .

▶ However, oscillations in solution may occur unless θ = 1 (Implicit
Euler scheme, L-stable).
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Let’s have another look at the boundary condition ...
We look at an example of a zero coupon bond option with payoff

V (x , T ) = [P(x , T , T ′) − K ]
+

.

For x j 0 option is far in-the-money and V (x , t) can be approximated
by intrinsic value V (x , t) ≈ Ṽ (x , t) with

Ṽ (x , t) = [P(x , t, T ′) − K ]
+

=

[
P(0, T ′)

P(0, t)
e−G(t,T )x− 1

2 G(t,T )2y(t) − K

]+

.

This yields
∂

∂x
Ṽ (x , t) = −G(t, T )

[
Ṽ (x , t) + K

]

and
∂2

∂x2
Ṽ (x , t) = −G(t, T )

︸ ︷︷ ︸

¼

∂

∂x
Ṽ (x , t).

Alternatively, for x k 0 option is far out-of-the-money and

∂2

∂x2
Ṽ (x , t) =

∂

∂x
Ṽ (x , t) = 0.
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We adapt approximation to our option pricing problem
▶ In principle, for a coupon bond underlying we could estimate

λ = λ(t) via option intrinsic value Ṽ (x , t) and

λ(t) =

[
∂2

∂x2
Ṽ (x , t)

]

/
∂

∂x
Ṽ (x , t) for

∂

∂x
Ṽ (x , t) ̸= 0,

otherwise λ(t) = 0.

▶ We take a more rough approach by approximating λ based only on
previous solution

λ0,N =

[
∂2

∂x2
V (x , t)

]

/
∂

∂x
V (x , t)

≈
[

∂2

∂x2
V (x1,N−1, t + ht)

]

/
∂

∂x
V (x1,N−1, t + ht)

≈
v j+1

0,N−2 − 2v j+1
1,N−1 + v j+1

2,N

h2
x

/
v j+1

2,N − v j+1
0,N−2

2hx

for v j+1
2,N − v j+1

0,N−2/(2hx ) ̸= 0, otherwise λ0,N = 0.
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It turns out that accuracy of one-sided first order
derivative approximation is of order O(h2

x) I

Lemma
Assume V = V (x) is twice continuously differentiable. Moreover,
consider grid points x−1, x0, x1 with equal spacing
hx = x1 − x0 = x0 − x−1. If there is a λ0 ∈ R such that

V ′′(x0) = λ0 · V ′(x0)

then

V ′(x0) =
2 [V (x1) − V (x0)]

(2 + λ0hx ) hx

+ O(h2
x ).

Proof:

Denote vi = V (xi). We have from standard Taylor approximation

V ′′(x0) =
v−1 − 2v0 + v1

h2
x

+ O(h2
x ) and V ′(x0) =

v1 − v−1

2hx

+ O(h2
x ).
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It turns out that accuracy of one-sided first order
derivative approximation is of order O(h2

x) II

From V ′′(x0) = λ · V ′(x0) follows

v−1 − 2v0 + v1

h2
x

+ O(h2
x ) = λ0

[
v1 − v−1

2hx

+ O(h2
x )

]

.

Multiplying with 2h2
x gives the relation

2 (v−1 − 2v0 + v1) + O(h4
x ) = λ0hx (v1 − v−1) + O(h4

x ).

Reordering terms yields

(2 + λ0hx ) v−1 = 4v0 + (λ0hx − 2) v1 + O(h4
x ).

And solving for v−1 gives
v−1 = [4v0 + (λ0hx − 2) v1] / (2 + λ0hx ) + O(h4

x ).
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It turns out that accuracy of one-sided first order
derivative approximation is of order O(h2

x) III

Now, we substitute v−1 in the approximation for V ′(x). This gives

V ′(x0) =
v1 −

[
[4v0 + (λ0hx − 2) v1] / (2 + λ0hx ) + O(h4

x )
]

2hx

+ O(h2
x )

=
(2 + λ0hx ) v1 − [4v0 + (λ0hx − 2) v1]

2 (2 + λ0hx ) hx

+ O(h2
x ) + O(h3

x )

=
2v1 − 4v0 + 2v1

2 (2 + λ0hx ) hx

+ O(h2
x )

=
2 (v1 − v0)

(2 + λ0hx ) hx

+ O(h2
x ).

▶ With constraint V ′′(x0) = λ · V ′(x0) we can eliminate explicit
dependence on second derivative V ′′(x0) and outer grid point
v−1 = V (x−1).
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It turns out that accuracy of one-sided first order
derivative approximation is of order O(h2

x) IV

▶ Analogous result can be derived for upper boundery and down-ward
approximation of first derivative.

▶ Resulting scheme is still second order accurate in state space
direction.
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We summarise the PDE pricing method

1. Discretise state space x on a grid [x0, . . . , xN ] and specify time step
size ht and θ ∈ [0, 1].

2. Determine the terminal condition v j+1 = max {Uj+1, Hj+1} for the
current valuation step.

3. Set up discretised linear operator M¹ of the resulting ODE system
d
dt

v = M¹ · v .

4. Incorporate appropriate product-specific boundary conditons.

5. Set up linear system [I + htθM¹] v j = [I − ht (1 − θ) M¹] v j+1.

6. Solve linear system for v j by tri-diagonal matrix solver.

7. Repeat with step 3. until next exercise date or tj = 0.
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Monte Carlo methods are widely applied in various finance
applications

▶ We demonstrate the basic principles for
▶ path integration of Ito processes
▶ exact simulation of Hull-White model paths

▶ There are many aspects that should also be considered, see e.g.

▶ L. Andersen and V. Piterbarg. Interest rate modelling, volume I to

III.

Atlantic Financial Press, 2010, Sec. 3.

▶ P. Glasserman. Monte Carlo Methods in Financial Engineering.
Springer, 2003
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Monte Carlo (MC) pricing is based on the Strong Law of
Large Numbers

Theorem (Strong Law of Large Numbers)
Let Y1, Y2, . . . be a sequence of independent identically distributed (i.i.d.)
random variables with finite expectation µ < ∞. Then the sample mean
Ȳn = 1

n

∑n
i=1 Yi converges to µ a.s. That is

lim
n→∞

Ȳn = µ a.s.

▶ We aim at calculating V (t) = N(t) · EN [V (T )/N(T ) | Ft ].

▶ For MC pricing simulate future discounted payoffs
{

V (T ;Éi )
N(T ;Éi )

}

i=1,2,...n
.

▶ And estimate

V (t) = N(t) · 1

n

n∑

i=1

V (T ; ωi)

N(T ; ωi)
.
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Keep in mind that sample mean is still a random variable
governed by central limit theorem (1/2)

Theorem (Central Limit Theorem)
Let Y1, Y2, . . . be a sequence of i.i.d. random variables with finite
expectation µ < ∞ and standard deviation σ < ∞. Denote the sample
mean Ȳn = 1

n

∑n
i=1 Yi . Then

Ȳn − µ

σ/
√

n

d−→ N(0, 1).

Moreover, for the variance estimator s2
n = 1

n−1

∑n
i=1

(
Yi − Ȳn

)2
we also

have
Ȳn − µ

sn/
√

n

d−→ N(0, 1).
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Keep in mind that sample mean is still a random variable
governed by central limit theorem (2/2)

Ȳn − µ

sn/
√

n

d−→ N(0, 1).

▶ Here, N(0, 1) is the standard normal distribution.

▶
d−→ denotes convergence in distribution, i.e. limn→∞ Fn(x) = F (x)

for the corresponding cumulative distribution functions and all x ∈ R

at which F (x) is continuous.

▶ sn/
√

n is the standard error of the sample mean Ȳn.
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How do we get our samples V (T ; ωi)/N(T ; ωi)?

1. Simulate state variables x(t) on relevant dates t:

2. Simulate numeraire N(t) on relevant dates t:

3. Calculate payoff V (T , x(T )) at observation/pay date T .
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We need to simulate our state variables on the relevant
observation dates

Consider the general dynamics for a process given as SDE

dX (t) = µ(t, X (t)) · dt + σ(t, X (t)) · dW (t).

▶ Typically, we know initial value X (t) (t = 0).

▶ We need X (T ) for some future time T > t.

▶ In Hull-White model and risk-neutral measure formulation we have

µ(t, X (t)) = y(t) − a · X (t), and, σ(t, X (t)) = σ(t).

There are several standard methods to solve above SDE. We will briefly
discuss Euler method and Milstein method.
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Euler method for SDEs is similar to Explicit Euler method
for ODEs

▶ Specify a grid of simulation times t = t0, t1, . . . , tM = T .

▶ Calculate sequence of state variables

Xk+1 = Xk + µ(tk , Xk) (tk+1 − tk) + σ(tk , Xk) [W (tk+1) − W (tk)] .

▶ Drift µ(tk , Xk) and volatility σ(tk , Xk) are evaluated at current time
tk and state Xk .

▶ Increment of Brownian motion W (tk+1) − W (tk) is normally
distributed, i.e.

W (tk+1) − W (tk) = Zk · √
tk+1 − tk with Zk ∼ N(0, 1).
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Milstein method refines the simulation of the diffusion
term (1/2)

▶ Again, specify a grid of simulation times t = t0, t1, . . . , tM = T .

▶ Calculate sequence of state variables

Xk+1 = Xk + µ(tk , Xk) (tk+1 − tk) + σ(tk , Xk) [W (tk+1) − W (tk)]

+
1

2
σ(tk , Xk)

∂σ(tk , Xk)

∂x

[

(W (tk+1) − W (tk))
2 − (tk+1 − tk)

]

.

▶ Drift µ(tk , Xk) and volatility σ(tk , Xk) are evaluated at current time
tk and state Xk .
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Milstein method refines the simulation of the diffusion
term (2/2)

▶ Requires calculation of derivative of volatility ∂
∂x

σ(tk , Xk) w.r.t.
state variable.

▶ Increment of Brownian motion W (tk+1) − W (tk) is normally
distributed, i.e.

W (tk+1) − W (tk) = Zk · √
tk+1 − tk with Zk ∼ N(0, 1).

▶ With ∆k = tk+1 − tk iteration becomes

Xk+1 = Xk + µ(tk , Xk)∆k + σ(tk , Xk)Zk

√

∆k

+
1

2
σ(tk , Xk)

∂σ(tk , Xk)

∂x

(
Z 2

k − 1
)

∆k .
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How can we measure convergence of the methods?
▶ We distinguish strong order of convergence and weak order of

convergence.

▶ Consider a discrete SDE solution
{

X h
k

}M

k=0
with X h

k ≈ X (t + kh),

h = T−t
M

.

Definition (Strong order of convergence)
The discrete solution X h

M at final maturity T = t + hM converges to the
exact solution X (T ) with strong orderβ if there exists a constant C such
that

E
[∣
∣X h

M − X (T )
∣
∣
]

f C · h´ .

▶ Strong order of convergence focuses on convergence on the
individual paths.

▶ Euler method has strong order of convergence of 1
2 (given sufficient

conditions on µ(·) and σ(·)).
▶ Milstein method has strong order of convergence of 1 (given

sufficient conditions on µ(·) and σ(·)).
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For derivative pricing we are typically interested in weak
order of convergence

We need some context for weak order of convergence

▶ A function f : R → R is polynomially bounded if
|f (x)| f k (1 + |x |)q

for constants k and q and all x .

▶ The set Cn
P represents all functions that are n-times continuously

differentiable and with 1st to nth derivative polynomially bounded.

Definition (Weak order of convergence)
The discrete solution X h

M at final maturity T = t + hM converges to the
exact solution X (T ) with weak orderβ if there exists a constant C such
that

∣
∣E

[
f

(
X h

M

)]
− E [f (X (T ))]

∣
∣ f C · h´ ∀f ∈ C2´+2

P

for sufficiently small h.

▶ Think of f as a payoff function, then weak order of convergence is
related to convergence in price.

▶ Euler method and Milstein method can be shown to have weak order
1 convergence (given sufficient conditions on µ and σ).
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Some comments regarding weak order of convergence

Error estimate

∣
∣E

[
f

(
X h

M

)]
− E [f (X (T ))]

∣
∣ f C · h´

requires considerable assumptions regarding smoothness of µ(·), σ(·) and
test functions f (·).

▶ In practice payoffs are typically non-smooth at the strike.

▶ This limits applicability of more advanced schemes with theoretical
higher order of convergence.

▶ A fairly simple approach of a higher order scheme is based on
Richardson extrapolation:
▶ this method is also applied to ODEs,
▶ see Glassermann (2000), Sec. 6.2.4 for details.

▶ Typically, numerical testing is required to assess convergence in
practice.



p. 441

The choice of pricing measure is crucial for numeraire
simulation

Consider risk-neutral measure, then

N(T ) = B(T ) = exp

{
∫ T

0

r(s)ds

}

= exp

{
∫ T

0

[f (0, s) + x(s)] ds

}

= P(0, T )−1 exp

{
∫ T

0

x(s)ds

}

.

Requires simulation or approximation of
∫ T

0
x(s)ds.

Suppose x(tk) is simulated on a time grid {tk}M
k=0 then we approximate

integral via Trapezoidal rule

∫ T

0

x(s)ds ≈
M∑

i=1

x(tk−1) + x(tk)

2
(tk − tk−1) .

Numeraire simulation is done in parallel to state simulation

N(tk) =
P(0, tk−1)

P(0, tk)
· N(tk−1) · exp

{
x(tk−1) + x(tk)

2
(tk − tk−1)

}

.



p. 442

Alternatively, we can simulate in T -forward measure for a
fixed future time T

Select a future time T̄ sufficiently large. Then N(0) = P(0, T̄ ).
At any pay time T f T̄ numeraire is directly available via zero coupon
bond formula

N(T ) = P(x(T ), T , T̄ ) =
P(0, T̄ )

P(0, T )
e−G(T ,T ′)x(T )− 1

2 G(T ,T ′)2y(T ).

However, T̄ -forward measure simulation needs consistent model
formulation or change of measure.
In particular

dW T̄ (t)
︸ ︷︷ ︸

B.M. in T̄ -forward measure

= σP(t, T̄ )
︸ ︷︷ ︸

ZCB volatility

·dt + dW (t)
︸ ︷︷ ︸

B.M. in risk-neutral measure

.
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Another commonly used numeraire for simulation is the
discretely compounded bank account

▶ Consider a grid of simulation times t = t0, t1, . . . , tM = T .
▶ Assume we start with 1 EUR at t = 0, i.e. N(0) = 1.
▶ At each tk we take numeraire N(tk) and buy zero coupon bond

maturing at tk+1. That is

N(t) = P(t, tk+1) · N(tk)

P(tk , tk+1)
for t ∈ [tk , tk+1] .

Explicitly, define discretely compounded bank account as B̄(0) = 1 and

B̄(t) = P(t, tk+1)
∏

tk <t

1

P(tk , tk+1)
.

We get

d

(
B̄(t)

P(t, tk+1)

)

=
∏

tk <t

1

P(tk , tk+1)
·d

(
P(t, tk+1)

P(t, tk+1)

)

= 0 for t ∈ [tk , tk+1] .

Simulating in B̄-measure is equivalent to simulating in rolling
tk+1-forward measure.
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Outline

American Monte Carlo
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Regression-based Backward Induction
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Do we really need to solve the Hull-White SDE
numerically?

Recall dynamics in T -forward measure

dx(t) =
[
y(t) − σ(t)2G(t, T ) − a · x(t)

]
· dt + σ(t) · dW T (t).

That gives

x(T ) = e−a(T−t)·
[

x(t) +

∫ T

t

ea(u−t)
([

y(u) − σ(u)2G(u, T )
]

du + σ(u)dW T (u)
)

]

.

As a result x(T ) ∼ N(µ, σ2) (conditional on t) with

µ = E
T [x(T ) | Ft ] = G ′(t, T ) [x(t) + G(t, T )y(t)] and

σ2 = Var [x(T ) | Ft ] = y(T ) − G ′(t, T )2y(t).

We can simulate exactly

x(T ) = µ + σ · Z with Z ∼ N(0, 1).
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Expectation calculation via µ = E
T [x(T ) | Ft ] requires

carefull choice of numeraire
Consider grid of simulation times t = t0, t1, . . . , tM = T .
We simulate

x(tk+1) = µk + σk · Zk

with

µk = G ′(tk , tk+1) [x(tk) + G(tk , tk+1)y(tk)] ,

σ2
k = y(tk+1) − G ′(tk , tk+1)2y(tk), and

Zk ∼ N(0, 1).

Grid point tk+1 must coincide with forward measure for Etk+1 [·] for each
individual step k → k + 1.
Numeraire must be discretely compounded bank account B̄(t) and

B̄(tk+1) =
B̄(tk)

P(x(tk), tk , tk+1)
.

Recursion for x(tk+1) and B̄(tk+1) fully specifies path simulation for
pricing.
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Some comments regarding Hull-White MC simulation ...

▶ We could also simulate in risk-neutral measure or T̄ -forward
measure.
▶ This might be advantegous if also FX or equities are

modelled/simulated.
▶ Requires adjustment of conditional expectation µk and numeraire

N(tk) calculation.
▶ Variance σ2

k is invariant to change of meassure in Hull-White model.

▶ Repeat path generation for as many paths 1, . . . , n as desired (or
computationally feasible).

▶ For Bermudan pricing we need to simulate x and N (at least) at

exercise dates T 1
E , . . . , T k̄

E .

▶ For calculation of Zk use
▶ pseudo-random numbers or
▶ Quasi-Monte Carlo sequences.

as proxies forindependent N(0, 1) random variables accross time
steps and paths.
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We illustrate MC pricing by means of a coupon bond
option example

Consider coupon bond option expiring at TE with coupons Ci paid at Ti

(i = 1, . . . , u, incl. strike and notional).

▶ Set t0 = 0, t1 = TE /2 and t2 = TE (two steps for illustrative
purpose).

▶ Compute 2n independent N(0, 1) pseudo random numbers
Z 1, . . . , Z 2n.

▶ For all paths j = 1, . . . , n calculate:
▶ µ

j
0, σ0 and B̄j(t1); note µ

j
0 and B̄j(t1) are equal for all paths j since

x(t0) = 0,
▶ x

j
1 = µ

j
0 + σ0 · Z j ,

▶ µ
j
1, σ1 and B̄j(t2); note now µ

j
1 and B̄j(t2) depend on x

j
1,

▶ x
j
2 = µ

j
1 + σ1 · Z n+j ,

▶ payoff V j(t2) =
[∑u

i=1
Ci · P(x j

2, t2, Ti )
]+

at t2 = TE .

▶ Calculate option price (note B̄(0) = 1)

V (0) = B̄(0) · 1

n

n∑

j=1

V j(t2)

B̄j(t2)
.
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Let’s return to our Bermudan option pricing problem

H3 = 0

U3

V3 = max{U3, H3}

H2 = . . .

U2

V2 = max{U2, H2}

H1 = . . .

U1

V1 = max{U1, H1}

H0 = B(t)E

[
V1

B(T1
E

)
| Ft

]

-

continuation value

-

? ? ? ? ? ?

6 6 6

T 1
E

T 1
l−1

T̃ 1
k−1

Tn

T̃m

K

Lm

-

? ? ? ?

6 6

T 2
E

T 2
l−1

T̃ 2
k−1

Tn

T̃m

K

Lm

-

? ?

6

T 3
E

T 3
l−1

T̃ 3
k−1

Tn

T̃m

K

Lm

-

exercise payoff

-

? ? ? ? ? ?

6 6 6

T 1
E

T 1
l−1

T̃ 1
k−1

Tn

T̃m

K

Lm

-

? ? ? ?

6 6

T 2
E

T 2
l−1

T̃ 2
k−1

Tn

T̃m

K

Lm

-

? ?

6

T 3
E

T 3
l−1

T̃ 3
k−1

Tn

T̃m

K

Lm
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In this setting we need to calculate future conditional
expectations

▶ Assume we already simulated paths for state variables xk ,
underlyings Uk and numeraire Bk for all relevant dates tk .

▶ We need continuation values Hk defined recursively via Hk̄ = 0 and

Hk = BkEk

[
max {Uk+1, Hk+1}

Bk+1

]

.

▶ In principle, we could use nested Monte Carlo:

▶ In practice, nested Monte Carlo is typically computationally not
feasible.
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A key idea of American Monte Carlo is approximating
conditional expectation via regression

Conditional expectation

Hk = Ek

[
Bk

Bk+1
max {Uk+1, Hk+1}

]

is a function of the path x(t) for t f tk .

For non-path-dependent underlyings Uk , Hk can be written as function of
xk = x(tk), i.e.

Hk = Hk(xk).

We aim at finding a regression operator

Rk = Rk [Y ]

which we can use as proxy for Hk .



p. 453

What do we mean by regression operator?
Denote ζ(ω) = [ζ1(ω), . . . , ζq(ω)]

¦
a set of basis functions (vector of

random variables).

Let Y = Y (ω) be a target random variable.

Assume we have outcomes ω1, . . . , ωn̄ with control variables
ζ(ω1), . . . , ζ(ωn̄) and observations Y (ω1), . . . , Y (ωn̄).

A regression operator R [Y ] is defined via

R [Y ] (ω) = ζ(ω)¦β

where the regression coefficients β solve linear least squares problem

∥
∥
∥
∥
∥
∥
∥






ζ(ω1)¦β − Y (ω1)
...

ζ(ωn̄)¦β − Y (ωn̄)






∥
∥
∥
∥
∥
∥
∥

2

→ min .

Linear least squares system can be solved e.g. via QR factorisation or
SVD.
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A basic pricing scheme is obtained by replacing conditional
expectation of future payoff by regression operator

Approximate H̃k ≈ Hk via H̃k̄ = Hk̄ = 0 and

H̃k = Rk

[
Bk

Bk+1
max

{
Uk+1, H̃k+1

}
]

for k = k̄ − 1, . . . , 1.

▶ Critical piece of this methodology is (for each step k)
▶ choice of regression variables ζ1, . . . , ζq and
▶ calibration of regression operator Rk with coefficients β.

▶ Regression variables ζ1, . . . , ζq must be calculated based on
information up to tk .
▶ They must not look into the future to avoid upward bias.

▶ Control variables ζ(ω1), . . . , ζ(ωn̄) and observations
Y (ω1), . . . , Y (ωn̄) for calibration should be simulated on paths
independent from pricing.
▶ Using same paths for calibration and payoff simulation also

incorporates information on the future.
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What are typical basis functions?

State variable approach
Set ζi = x(tk)i−1 for i = 1, . . . , q. Typical choice is q ≈ 4 (i.e.
polynomials of order 3). For multi-dimensional models we would set

ζi =
∏d

j=1 xj(tk)pi,j with
∑d

j=1 pi,j f r .

▶ Very generic and easy to incorporate.

Explanatory variable approach
Identify variables y1, . . . yd̄ relevant for the underlying option. Set basis
functions as monomials

ζi =

d̄∏

j=1

yj(tk)pi,j with

d̄∑

j=1

pi,j f r .

▶ Can be chosen option-specific and incorporate information prior to
tk .

▶ Typical choices are co-terminal swap rates or Libor rates (observed
at tk).
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Regression of the full underlying can be a bit rough - we
may restrict regression to exercise decision only

For a given path consider

Hk =
Bk

Bk+1
max {Uk+1, Hk+1}

=
Bk

Bk+1

[
1{Uk+1>Hk+1}Uk+1 +

(
1 − 1{Uk+1>Hk+1}

)
Hk+1

]
.

Use regression to calculate 1{Uk+1>Hk+1}.
Calculate Rk+1 = Rk+1 [Uk+1 − Hk+1], set Hk̄ = 0 and

Hk =
Bk

Bk+1

[
1{Rk+1>0}Uk+1 +

(
1 − 1{Rk+1>0}

)
Hk+1

]
for k = k̄−1, . . . , 1.

▶ Think of 1{Rk+1>0} as an exercise strategy (which might be
sub-optimal).

▶ This approach is sometimes considered more accurate than
regression on regression.

▶ For further reference, see also Longstaff/Schwartz (2001).
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We summarise the American Monte Carlo method
1. Simulate n paths of state variables x j

k , underlyings U j
k and

numeraires Bj
k (j = 1, . . . , n) for all relevant times tk (k = 1, . . . k̄).

2. Set H j

k̄
= 0.

3. For k = k̄ − 1, . . . 1 iterate:

3.1 Calculate control variables
{

ζ
j
i = ζi (ωj)

}j=1,...,n̂

i=1,...,q
and regression

variables Y j = U
j

k − H
j

k for the first n̂ paths (n̂ ≈ 1
4
n).

3.2 Calibrate regression operator Rk+1 = Rk+1[Y ] which gives
coefficients β.

3.3 Calculate control variables
{

ζ
j
i = ζi (ωj)

}j=n̂+1,...n

i=1,...,q
for remaining paths

and (for all paths)

H
j

k =
B

j

k

B
j

k+1

[

1{Rk+1(ωj )>0}U
j

k+1 +
(

1 − 1{Rk+1(ωj )>0}

)

H
j

k+1

]

.

4. Calculate discounted payoffs for the paths j = n̂ + 1, . . . n not used
for regression

H j
0 =

Bj
k

Bj
k+1

max
{

U j
1, H j

1

}

.

5. Derive average V (0) = 1
n−n̂

∑n
j=n̂+1 H j

0.
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Some comments regarding AMC for Bermudans in
Hull-White model

▶ AMC implementations can be very bespoke and problem specific.
▶ See literature for more details.

▶ More explanatory variables or too high polynomial degree for
regression may deteriorate numerical solution.
▶ This is particularly relevant for 1-factor models like Hull-White.
▶ Single state variable or co-terminal swap rate should suffice.

▶ AMC with Hull-White for Bermudans is not the method of choice.
▶ PDE and integration methods are directly applicable.
▶ AMC is much slower and less accurate compared to PDE and

integration.

AMC is the method of choice for high-dimensional models and/or
path-dependent products.
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