
Abstract

An stochastic system is called ergodic if it tends in probability to a limiting form that is
independent of the initial conditions. Breakdown of ergodicity gives rise to path dependence.
We illustrate the importance of ergodicity and breakdown thereof in economics reviewing
some work of non-market interactions including microeconomic models of endogenous pref-
erence formation and macroeconomic models of economic growth.

Ergodicity and Non-Ergodicity in Economics

A stochastic system is called ergodic if it tends in probability to a limiting form that is
independent of the initial conditions. Breakdown of ergodicity gives rise to path dependence.
When path dependence occurs, “history matters”. Choices made on the basis of transi-
tory conditions can persist long after those conditions change. Path-dependent features of
economics range from small-scale technical standards to large-scale institutions. Prominent
path-dependent features in economics include technical standards, such as the “QWERTY”
standard typewriter keyboard and the “standard gauge” of railway track. Ergodicity and
breakdown thereof plays a major role in models of social interaction. We illustrate this im-
portance summarizing some work on endogenous preference formation, learning dynamics in
population games, and models of non-market interaction. As many of these models share a
common mathematical basis, we also outline some of the underlying mathematical techniques.

Endogenous Preference Formation

In his pioneering paper on endogenous preference formation, Föllmer (1974) developed
an equilibrium analysis of large exchange economies where the preferences of an agent a are
subject to random shocks xa, and where the probabilities governing that randomness have an
interactive structure. In an earlier work by Hildenbrand (1971) the states xa were random
but independent across agents. In such a situation, and under mild conditions on the agents’
excess demand functions z(xa, ·) given their states xa

t , there exists a price system p such that
the per capita excess demand gets small if the number of agents gets large. More precisely,

lim
n→∞

1
|An|

∑

a∈An

z(xa, p) = 0 (1)

where An ↑ A is a sequence of finite sub-populations converging to some infinite set A. In
this case all variability in aggregate access demand is eliminated by the law of large numbers.
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The assumption of independence of states can be dropped as long as the probability
measure µ governing the joint distribution of the configuration (xa)a∈A is ergodic, i.e., if
spatial averages converge to their expected value under µ. However, when preferences are
interactive, the probability laws governing individual behavior may be insufficient a statistic
for the resulting aggregate behavior. These probabilities do not necessarily determine the
distribution of the entire configuration (xa)a∈A. This effect can best be illustrated in the
context of Föllmer’s Ising economy where agents a ∈ A are indexed by the two dimensional
integer lattice (A = Z2) and interact with the agents in their neighborhood N(a) := {b ∈
A : ‖a−b‖ = 1}. The set of possible states is {−1, 1}, and the probabilities (πa)a∈A governing
the dependence of an individual agent’s preferences on his neighbors’ states take the form

πa(xa; x−a) =
exp

{
xah + xa

∑
b∈N(a) Jxb

}

exp
{

xah + xa
∑

b∈N(a) Jxb
}

+ exp
{
−xah− xa

∑
b∈N(a) Jxb

} . (2)

Here h specifies to which extend agents are outer directed while J ≥ 0 determines the
dependence of an agent’s state on the preferences of others. The case J = 0 corresponds to
independent preferences. Föllmer calls a probability measure µ on the configuration space S =
{x = (xa)a∈A : xa ∈ {−1, +1}} a global phase if its one-dimensional marginal distributions
are consistent with the microscopic data given by the local specification (2), i.e., if

µ(xa = ±1|x−a) = πa(±1;x−a). (3)

A global phase µ describes the joint distribution of all the agents’ states while the local
characteristics (πa)a∈A describe the conditional dependence of preferences on the states of
others. A phase µ can be equilibrated if there exists a price system such that (1) holds
µ-almost surely. For independent preferences and outer directed (h 6= 0) economies, global
phases are always unique and ergodic. However, two ergodic global phases µ+ and µ− exist for
inner directed (h = 0) economies when the interaction becomes too strong. When J exceeds
some critical value the microeconomic data (πa)a∈A in (2) does not determine equilibrium
prices. More precisely, by the ergodic theorem,

lim
n→∞

1
|An|

∑

a∈An

z(xa, p) =
∫

z(x0, p)µ±(dx0) µ±-a.s. (4)

and we can find prices p+ and p− equilibrating µ+ and µ−, respectively. However, there is
typically no price system that equilibrates the market simultaneously for µ+ and µ− because∫

z(x0, p)µ+(dx0) 6= ∫
z(x0, p)µ−(dx0). When the interaction is too strong, randomness in

preferences may thus become a source of uncertainty about equilibrium prices.
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Stochastic Strategy Revision in Population Games

Föllmer (1974) beautifully illustrates the interplay between local interactions and the
breakdown of ergodicity in large economies. However, his model lacks an element of choice.
The pioneering work by Blume (1993) overcomes this shortcoming in a natural way. His
work is concerned with the aggregate behavior in population games of bounded rational play
looking for “Nash-like play in the aggregate rather than at the level of an individual player”.
By analogy to Föllmer (1974), Blume’s dynamic version of an Ising economy assumes that
agents are located on the two-dimensional integer lattice (A = Z2), interact only with their
nearest neighbors, and choose actions from a binary action set. Choice opportunities arise
randomly, and only for one agent at a time. When such an opportunity arises for player
a ∈ A at time t, his choice xa

t ∈ {−1, +1} results in an instantaneous payoff G(xa
t , x

b
t) from

his neighbor b ∈ N(a) and in a total payoff

∑

b∈N(a)

G(xa
t , x

b
t). (5)

The conditional probability πa(xa
t ; x

−a
t ) with which player a ∈ A selects an action xa

t given
that the rest of the population is configured to x−a

t can be chosen to take the form (2) with
h = βĥ and J = βĴ . The quantity β ≥ 0 specifies the strength of interaction while ĥ and Ĵ

are determined in terms of the 2× 2 payoff matrix G. Specifically,

πa(xa
t ; x

−a
t ) =

exp
{

β
[
xa

t ĥ + xa
t

∑
b∈N(a) Ĵxb

t

]}

exp
{

β
[
xa

t ĥ + xa
t

∑
b∈N(a) Ĵxb

t

]}
+ exp

{
−β

[
xa

t ĥ + xa
t

∑
b∈N(a) Ĵxb

t

]} . (6)

These flip rates correspond to those of the stochastic Ising model of statistical mechanics.
They uniquely determine the dynamics of the continuous time Markov process {xt}t≥0 on S.
The process has an ergodic stationary measure µ if the distribution of choices does not change
over time when the initial state is chosen according to µ and if empirical averages converge
to their expected values under µ. The process is called ergodic if it has a unique ergodic
measure. As it is well known from the theory of interacting particle systems, the set of all
ergodic probability measures of the Markov process {xt}t≥0 is given by the ergodic global
phases corresponding to the local specification (6). As a result, Blume’s stochastic strategy
revision process is ergodic if ĥ 6= 0 and Ĵ ≥ 0. If G describes a two person coordination game,
{xt}t∈N is ergodic and the players eventually coordinate on the risk dominant equilibrium if
β →∞. However, ergodicity breaks down for games with symmetric payoff matrices (ĥ = 0)
when the interaction becomes too strong. In this case, initial conditions are persistent. The
long run average choice depends on the initial distribution of choices.

3



Non-ergodic economic Growth

The evolution of individual choices in Blume (1993) is described by a continuous time
Markov process with asynchronous updating. In local interaction models with synchronous

updating, the dynamics of individual behavior is typically described by a Markov chain whose
transition operator takes the product form

Π(xt; ·) =
∏

a∈A
πa

(
·; {xb

t}b∈N(a)

)
. (7)

While the individual transition probabilities πa have an interactive structure the actual tran-
sition to a new configuration itself is made independently by different agents. The long run
dynamics of such Markov chains plays a major role in, e.g., microstructure models of financial
markets (Horst (2005a)), and macroeconomic models of economic growth (Durlauf (1993)).

The substantial differences in output levels and growth rates across countries have long
become a major focus of macroeconomic research. A hallmark of the stochastic growth
model pioneered by Brock and Mirman (1972) is the convergence of economies with identical
preferences and production functions to a common level of aggregate output. Yet many
analyses of long-run output movements have concluded that per capita production is not
equalizing across countries. To explain this divergence, Durlauf (1993) studies a dynamic
model of capital accumulation of an economy with an infinite set A of interacting companies
where local technological externalities affect the process of production. Each company a ∈ Z
chooses a capital stock sequence {Ka

t }t∈N that maximizes the present value of future profits.
The technique-specific production functions generate output

Y a
t = f(Ka

t−1, x
a
t , F (xa

t )) (8)

where xa
t ∈ {0, 1}. Technique xa

t = 1 is more productive, but comes at a higher fixed cost:
F (1) > F (0). Local technological complementarities affect the production as the distribution
of xa

t depends on the techniques implemented by the nearest neighbors b ∈ N(a) in the
previous period. The dynamics of production technologies is then described by an interactive
Markov chain of the form (7). Assuming that past choices of technique 1 improve the current
relative productivity of the technique and that the high productivity state xa

t = 1 for all
a ∈ A is an equilibrium, Durlauf (1993) shows that the high productivity state is the only
long run outcome if the complementarities are weak enough: there exists 0 < θ < 1 such that

lim
t→∞P [xa

t = 1 | xa
0 = 0] = 1 if πa

(
1; {xb

t−1}b∈N(a)

)
≥ θ.

Even when starting with all low-production industries, an economy eventually coordinates
on the high-production-technology when negative feedbacks form low production technologies
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are sufficiently weak. Powerful negative complementarities, on the other hand, can generate
a non-ergodic growth path. In fact, there exists 0 < θ < θ < 1 such that

lim
t→∞P [xa

t = 1 | xa
0 = 0] < 1 if πa

(
1; {xb

t−1}b∈N(a)

)
≤ θ.

If the complementarities are too strong, industries fail to coordinate on high-productivity
equilibria, and economies may get trapped in low-productivity equilibria.

Models of social Interaction - Mean-Field Interaction

Much of the literature on social interactions assumes very special interaction structures
such as nearest neighbor interactions as in Blume (1993) or Durlauf (1993) or mean field
interaction. If agents care about the average behavior throughout the whole population, the
analysis is most naturally done in the context of an infinity of agents as in Brock and Durlauf
(2001). These authors analyze aggregate behavioral outcomes when individual utility exhibits
social interaction effects. In the simplest setting agents take actions xa from the binary action
set {−1, +1} and their utilities consists of three components:

Ua(xa,ma, ε(xa)) = u(xa) + Jxama + ε(xa), (9)

Here ma denotes agent a’s expectation about the average choice of all the other agents. The
second term in the utility function may thus be viewed as a social utility expressing an agent’s
desire for conformity (J > 0). The quantity u(xa), on the other hand, represents the private
utility associated with a choice while ε(xa) is a random utility term independent of other
agents’ utilities and extreme-value distributed with parameter β > 0. As a result, the agents’
conditional choice probabilities are of the form (2) if we replace the dependence of actual

actions by a dependence on expected actions. When agents have homogeneous expectations
about the behavior of others (ma ≡ m), then

πa(xa;m) =
exp {β(u(xa) + Jxam)}

exp {β(u(1) + Jm)}+ exp {β(u(−1)− Jm)} . (10)

In the limit of an infinite economy all uncertainty about the average action vanishes as in
Hildenbrand (1971), and the average action is tanh(βh + βJm) where h = 1

2(u(1)− u(−1)).
If the agents have rational expectations the average satisfies the fixed point condition

m = tanh(βh + βJm). (11)

This equation has a unique solution if h 6= 0 and β is large enough. The uniqueness property
breaks down if h = 0 in which case there exist three roots to equation (11).
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Models of social Interaction - Local & global Interaction

When agents care about both the average action and the choices of neighbors, the equi-
librium analysis becomes more involved. Horst and Scheinkman (2003) provide a general
framework for analyzing systems of social interactions with an infinite set A of locally and
globally interacting agents where interaction structures and preferences are random. While
the distinction between local and global interactions is unnecessary for models with finitely
many agents, it plays a major role in the analysis of infinite economies. The continuity of
an agent’s utility function with respect to the vector of actions requires implicitly, that the
dependence of his utility function on another agent’s action decays sufficiently fast as the
distance to that other agent grows. Thus, if preferences depend on average actions in a non-
trivial manner, utility functions are not continuous. To overcome this problem, Horst and
Scheinkman (2003) separated the local and global impact of an action profile x on preferences
viewing the average action as an additional parameter of the utility functions ua. Specifically,

ua(x, %, ϑa) ≡ U(xa, {xb}b∈N(a), %, ϑa) (12)

for a continuous map U . Here % denotes the agents’ common “expected” average action
and the random vector (ϑa)a∈A specifies the interaction pattern and the distribution of taste
shocks. In equilibrium, the average %(x∗) associated to the configuration x∗ is independent of
the realized interaction pattern and taste shocks and correctly anticipated: % = %(x∗). If some
form of spatial homogeneity prevails, existence or uniqueness of equilibria can be established
under a weak interaction condition that restricts the influence of an agent’s choice on the
optimal decisions of others. In this case one can also prove a spatial ergodicity result: the
equilibrium of the infinite system is the limit of equilibria of finite systems when the number
of agents grows to infinity (Horst and Scheinkman (2005)).

When dynamic models of social interactions are studied the analysis is often confined to
the case of backward looking myopic dynamics, either as a simple explicit dynamic process
with random sequential choice, or as an equilibrium selection procedure. Rational expecta-
tions equilibria of economies with local interactions are studied in Bisin, Horst, and Özgür
(2003), and Horst (2005b). While agents interact locally in these models, they are forward
looking. Their choices are optimally based on the past actions in their neighborhood, as well
as on their anticipations of the future actions of their neighbors. The resulting population
dynamics can be described by an interactive Markov chain of the form (7) but the transition
probabilities πa are endogenously specified in terms of the agents’ policy functions. Bisin,
Horst, and Özgür (2003) also allow for local and global interactions and combine spatial and
temporal ergodicity results. The dynamics on the level of aggregate behavior is determin-
istic (spatial ergodicity) and the distribution of individual choices settles down in the long
run (temporal ergodicity) when the interaction is weak enough. The analysis, however, is
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confined to one-sided interactions. It is an open problem to fully embed the theory of social
interactions into a dynamics analysis of equilibrium.
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