
On Securitization, Market Completion and Equilibrium Risk

Transfer∗

Ulrich Horst

Dept of Mathematics

Humboldt University Berlin

Unter den Linden 6

10099 Berlin

horst@math.hu-berlin.de

Traian A. Pirvu

Dept of Mathematics & Statistics

McMaster University

1280 Main Street West

Hamilton, ON, L8S 4K1

tpirvu@math.mcmaster.ca
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Abstract

We propose an equilibrium framework within which to price financial securities written on non-

tradable underlyings such as temperature indices. We analyze a financial market with a finite set of

agents whose preferences are described by a convex dynamic risk measure generated by the solution of

a backward stochastic differential equation. The agents are exposed to financial and non-financial risk

factors. They can hedge their financial risk in the stock market and trade a structured derivative whose

payoff depends on both financial and external risk factors. We prove an existence and uniqueness of

equilibrium result for derivative prices and characterize the equilibrium market price of risk in terms

of a solution to a non-linear BSDE.
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1 Introduction

In recent years there has been an increasing interest in derivative securities written on non-tradable under-
lyings. Weather derivatives and other financial products written on non-tradable (non-financial, external)
underlyings such as temperature processes or precipitation indices are the end-product of a process called
securitization which transforms non-tradable risk factors into tradable financial assets. Securitized deriva-
tives provide new opportunities for hedging and risk-sharing. As such, they may contribute to a socially
more efficient allocation of risk exposures, in particular in incomplete markets where not all the states
of nature can be spanned by the existing assets. The potential benefits from creating and trading new
securities has sparked a huge literature on financial innovation with a wide focus ranging from optimal
security design, especially in the presence of asymmetric information (Allen & Gale, 1994), to endogenous
financial market structures.1 While the focus of the financial innovation literature is on pricing endoge-

nously created financial instruments, the GEI literature focuses on equilibrium properties of exogenously

introduced securities. Dynamic GEI models in discrete time are well understood even beyond the expected
utility framework; see Cheridito et al., 2009 and references therein. There is no unified framework for
continuous time models, though. Much of the continuous time GEI literature is confined either to single
agent models (He & Leland, 1993) or to multiple agent models of complete markets (see, e.g., Dana &
Jeanblanc, 2002; Duffie & Huang, 1985; Karatzas, Lehoczky & Shreve, 1990 or Riedel, 2001).

In this paper we propose a framework within which to address the problem of equilibrium pricing of
exogenously introduced derivative securities with a non-tradable underlying. The demand for the deriva-
tives comes from agents whose income is exposed to two sources of uncertainty. Uncertainty is represented
by two independent Brownian motions. We think of the first Brownian motion as a source of financial risk
and of the second Brownian motion as a non-financial (external) risk factor. The agents can hedge their
financial risk by trading a standard financial security (“stock”). Buying and selling the standard security
is unrestricted. There is no cost of trading and the securities’ price process is unaffected by the demand
of the agents. The risk-free rate is also exogenous. This is a fairly good approximation if we think of
the standard security as a liquidly traded stock and of the set of agents that are interested in trading the
derivative as a small subset of an otherwise large set of financial investors.

The derivative is in fixed supply and priced to match demand and supply. We establish existence and
characterization of equilibrium results when the agents’ risk preferences are induced by dynamic convex
risk measures generated by backward stochastic differential equations (BSDEs). Preferences induced by
dynamic risk measures and BSDEs form subclasses of (generalized) stochastic differential utilities (Duffie
& Epstein, 1992; Chen & Epstein, 2002; Lazrak & Quenez, 2003; Lazrak, 2004) and variational preferences
(Maccheroni, Marinacci & Rustichini, 2006). They are translation invariant and strongly time-consistent.
Translation invariance means that a cash amount added to a financial position reduces the risk by that
amount. This assumption is appropriate if we think of the agents as financial institutions that evaluate
their financial positions in terms of risk capital. For the special case of dynamic entropic risk measures
and for market prices of financial risk that depend only on the external risk factor we prove the existence
of a unique (in a certain class) equilibrium market price of (external) risk and characterize it in terms of a
solution to a BSDE with quadratic growth. We also prove that the volatility of the equilibrium derivative
price process can be represented in terms of a Lipschitz continuous function of the prevailing stock price

1See the summary articles by Duffie & Rahi (1995) and Tufano (2003) for a review of the financial innovation literature.
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and the external risk process. This allows us to deduce market completeness in equilibrium.2

Market completeness in equilibrium is key. Our model comprises of two sources of uncertainties and
two assets. Hence it is potentially complete, but there is no a-priori reason to assume completeness
in equilibrium3. The problem of dynamic completion of financial markets has recently been addressed by
Anderson & Raimondo (2008). They provide a non-degeneracy condition on the terminal security dividends
to insure completeness in equilibrium. Their results apply to a wider class of preferences, but their notion
equilibrium in continuous time is weaker than ours. They first establish existence of equilibrium results in
discrete time and then construct the information structure of the continuous time equilibrium by passing to
the limit as the time between two consecutive trading dates tends to zero. Our equilibrium is constructed
for exogenous information flows and sources of uncertainty. Further differences between their work and
ours include: (i) we allow for more general risk processes and a dependence between them; (ii) we do not
assume that the consumption processes (cash flows in our model) are bounded from below; (iii) we consider
a partial equilibrium model which renders the technical analysis much more involved.4

In order to prove our existence and characterization of equilibrium result we first characterize the market
prices of risk that are consistent with the assumption of no-arbitrage in the stock and derivative market.
For any such market price of risk (MPR) we solve the agents’ optimization problem under the assumption
that the derivative completes the market. We show that the dynamic optimization problem can be reduced
to static optimization problems and characterize the candidate optimal trading strategy in terms of an
implicit equation that involves the driver of the BSDE associated with the agent’s preferences. For the
special case of expected exponential utility maximizing agents this provides an alternative - and perhaps
more direct - approach to the problem of dynamic risk minimization than the martingale optimization
argument of Hu, Imkeller & Müller (2005a).

Subsequently we determine the equilibrium market price of external risk. The key observation is
that with our choice of preferences the problem of finding an equilibrium in an economy in which an
arbitrary number of derivatives are available for trading can be rewritten as an equilibrium problem in
which the derivative is in zero supply. This allows us to reduce the analysis of competitive equilibrium
to an equilibrium problem of a representative agent economy. The application of the representative agent
approach to equilibrium pricing in continuous time under translation invariant preferences is new to the
best of our knowledge. Jouini, Schachermayer & Touzi (2005) and Filipovic & Kupper (2006) studied static
models; Barrieu & El Karoui (2005, 2009) and Hu, Imkeller & Müller (2005b) considered dynamic models,
but restricted themselves to the simpler problem of efficient risk sharing. For dynamic exponential utility
functions and stock price processes that follow a simple geometric Brownian motion, an existence and
uniqueness of equilibrium result similar to ours was established by Horst & Müller (2007). Their approach
relied on the closed form representation of the optimal solution of an agent’s optimization problem as
computed by duality methods. This method does not carry over to more general utility functions and/or
more general risk processes. It particular, it does not allow for a dependence of the market price of financial
risk on the external risk factor. Allowing for such a feedback is one of the main contributions of this paper.

2The question of when trading in derivative securities completes the market has been addressed by many authors including

Davis (2004), Davis & Obloj (2008) and Romano and Touzi (1997). In their models derivative prices are given as conditional

expected payoff under an exogenous measure (usually the real-world measure) while in our model the pricing measure is

derived endogenously by an equilibrium condition.
3See Pesendorfer (1995) for an example of a financial market model where redundancies arise in equilibrium when the

financial market structure is endogenous.
4We show in Section 4.3.1 how the analysis simplifies in the case of full equilibrium.
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We characterize simultaneously the candidate equilibrium market price of external risk and the repre-
sentative agent’s optimal utility as a solution to a BSDE. The technical difficulty is then to verify that the
candidate equilibrium MPR that comes out of this BSDE defines a pricing measure under which market
completeness prevails. Verifying market completeness in equilibrium is hard so most authors assume com-
pleteness - either right away (Duffie & Huang, 1985; Dana & Jeanblanc, 2002) or in equilibrium (Riedel,
2001). Within our general framework we do the same. We verify completeness for the special case where
the agents evaluate their risk using entropic dynamic risk measures. We show that the equilibrium market
price of external risk can be characterized in terms of a BSDE with quadratic growth and that it can be
represented in terms of a Lipschitz continuous functions of the underlying risk processes. Applying the
Clark-Haussmann formula (Clark, 1970; Haussmann, 1979) we obtain an explicit representation of the
equilibrium derivative price volatility from which we deduce that the market is indeed complete in equi-
librium if the derivative’s payoff function is monotone in the external risk factor. A similar condition has
been derived by Horst & Müller (2007) for constant market prices of financial risk using PDE methods.
Our approach via the Clark-Haussmann formula is more direct, requires weaker conditions and allows the
market prices of financial risk to depend on the external risk factor.

For the case of dynamic entropic preferences the BSDE representation of the equilibrium dynamics
yields closed form expressions for the dependence of the equilibrium market price of risk on the agents’
risk tolerance and the number of derivatives that are available for trading. We show that the market price
of risk increases (decreases) with the number of derivatives if the derivative’s payoff increases (decreases)
in the external risk factor. The intuition comes from the usual “in-equilibrium-the-spot-price-density-
equals-the-representative-agent’s-marginal-utility” condition together with the fact that our agents have
translation invariant preferences. In fact, if the risk factors were constant, then translation invariance
would imply that the marginal utility from giving an extra derivative to the representative agent would
simply be the derivative’s payoff. When the risk factors are stochastic, the marginal utility is obtained by
first differentiating the agent’s endowment with respect to the number of derivatives and the state of the
risk process and then taking an expectation with respect to the equilibrium pricing measure.

Our model lends itself to efficient numerical computations so all our theoretical results are accompanied
by simulation results. Specifically, we simulate equilibrium derivative prices and illustrate the correlation
between the risk factors and the equilibrium MPR. We also illustrate the dependence of equilibrium prices
on the agents’ tolerance towards risk and show that the equilibrium prices are sub-linear in the derivative’s
payoff structure. This confirms a result of Chen (1995). Finally, we illustrate the positive effects of financial
innovation in our model. To this end, we benchmark our model against an incomplete market model in
which the derivative is not available for trading. Our simulations suggest that the overall risk exposure in
a model with the derivative is lower than in a model without the derivative and that the derivative’s total
payoff is an important determinant of the degree of risk reduction.

The remainder of this paper is organized as follows. We specify our microeconomic setup in Section 2
and lay out the general structure of our partial equilibrium model with translation invariant preferences in
Section 3. The specific case of entropic utilities is studied in detail in Section 4. Numerical simulations of
equilibrium prices and optimal risk exposures for entropic risk measures are reported in Section 5. Section
6 concludes. A technical appendix summarizes some of our notation and reviews important existence and
uniqueness results for BSDEs with quadratic growth, the link between dynamic risk measures and BSDEs
and Malliavin differentiability of BSDEs.
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2 The microeconomic setup

We consider a partial equilibrium model with a finite set A of agents. The agents are endowed with
uncertain payoffs. They can lend and borrow from the money money account at the same exogenous
risk-free rate which we assume for simplicity to be equal to zero. The agents’ goal is to hedge their risk
exposures at a terminal time T < ∞ by trading continuously in the financial market. The financial market
comprises a stock and a structured security (“derivative”). Stock prices are unaffected by the agents’
demand and follow some exogenous diffusion process. By contrast, the derivative is in fixed supply, traded
only by the agents that belong to the set A and priced to match supply and demand. We think of the
derivative as being issued by an agency like an insurance company or investment bank with the goal of
transferring non-financial risk to the capital market. The agency may or may not belong to the set A, so
the derivative may or may not be in zero net supply.

Risk processes
There are two sources of randomness in our model. They are represented by a 2-dimensional standard
Brownian motion W = (WS ,WR) defined on a filtered probability space (Ω,F , (Ft)T

t=0,P). Here (Ft)
denotes the filtration generated by W augmented by the P-null sets and F = FT . We view the Brownian
motion WR as a source of non-financial risk. It drives an external risk process (Rt) such as a temperature
process or precipitation index. For analytical convenience we assume that (Rt) follows a Brownian motion
with time-dependent deterministic drift function a : [0, T ] → R and constant volatility b > 0, i.e.,

dRt = atdt + bdWR
t (R0 = r0). (1)

Most of our results carry over to mean-reverting Ornstein-Uhlenbeck processes, though. The Brownian
motion WS describes a source of financial risk and drives the stock price process (St). Specifically,

dSt

St
= µS

t dt + σS
t dWS

t (S0 = s0) (2)

for (Ft)-adapted coefficients µS , σS : Ω × [0, T ] → R, with σS > 0. Our focus will be on coefficients that
depend on the external risk process.

Preferences
The agents evaluate their risk exposure using a dynamic convex risk measure generated by a BSDE. This
means that the evolution of the risk which the agent a ∈ A associates with an F-measurable random payoff
ξa is described by an (Ft)-adapted stochastic process (Y a

t ) that is given by the first component of a solution
(Y, Z) to a BSDE

−dY a
t = ga(t, Za

t )dt− Za
t dWt with terminal condition YT = ξa.

Here ga : [0, T ] × R2 → R is a deterministic continuous function and z 7→ ga(·, z) is continuously differ-
entiable and strictly convex. In particular, the agents’ risk preferences are strongly time consistent and
translation invariant.5 Furthermore, all properties of the preferences are coded in the driver ga. A standard

5Preferences are called translation invariant if they can represented by a family of utility functions Ut : L(FT ) → L(Ft)

(t ∈ [0, T ]) that satisfy the translation property Ut(ξ + Z) = Ut(ξ) + Z for all ξ ∈ L(FT ) and Z ∈ L(Ft). In our case, the

utility function of the agent a ∈ A at time t ∈ [0, T ] is given by Ua
t = −Y a

t . The connection between BSDEs and dynamic

translation invariant preferences is reviewed in the appendix.
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example that fits in this framework is the dynamic entropic risk measure with risk tolerance parameter γa.
In this case

Y a
t = −γa logE

[
exp

(
− 1

γa
ξa

)
| Ft

]
and ga(t, z) =

1
2γa

‖z‖2,
where ‖ · ‖ stands for the Euclidean norm. Other examples include g−expectations (see Gianin (2006) and
Peng (2004)). For a more detailed discussion of the link between strongly time-consistent and translation
invariant preference functionals and backward stochastic equations we refer to the recent work of Cheridito
et al. (2009) for the time discrete case and Delbaen et al. (2009) for continuous time.

Derivative payoffs and endowments
The derivative pays a yield at a rate ϕD and a lump sum amount hD at maturity6. The payoffs may
depend on both risk factors. Since the risk-free rate is zero the accumulated payoff HD up to maturity is
given by

HD = hD(T, ST , RT ) +
∫ T

0

ϕD(u, Su, Ru) du.

The income Ha of the agent a ∈ A may also be exposed to financial and external risk. Specifically,

Ha = ha(T, ST , RT ) +
∫ T

0

ϕa(u, Su, Ru)du.

We assume throughout that all the payoff functions are uniformly bounded. Some (though not all)
of our results will require additional Lipschitz properties with respect to the R-variable. To simplify the
exposition we therefore introduce the following standing assumption.

Standing Assumption The functions, hD, ha, ϕD, ϕa are uniformly bounded, continuously differentiable

with uniformly bounded derivatives. The derivatives are uniformly Lipschitz w.r.t the external risk factor.

We will also assume that all payoffs are made at the terminal time T . This assumption can be made
without loss of generality, due to the translation invariance of the risk preferences and because the risk free
rate is zero. Shifting all payoffs to the terminal date affects an agent’s utility, but not her trading decision.
We further comment on this in Remark 3.7 below.

3 The general structure of the equilibrium dynamics

The derivative is in fixed supply and priced to match demand and supply. In order to identify and
characterize an equilibrium pricing rule we recall that any linear pricing scheme on L2(P), the set of square
integrable random variables with respect to P, can be identified with a 2-dimensional predictable process
θ that makes the process (Zθ

t ) defined by

Zθ
t = exp

(
−

∫ t

0

θsdWs − 1
2

∫ t

0

‖θs‖2ds

)
(3)

a uniformly integrable martingale; see, e.g. Horst & Müller (2007). For any such process we denote by Pθ

a probability measure equivalent to P with density Zθ
T and introduce the Pθ-Brownian motion

W θ
t = Wt +

∫ t

0

θs ds.

6Many weather derivatives such as HDD and CDD pay “dividends” at a temperature dependent rate. The lump sum

payment at maturity allows us to include European derivatives on the stock, for instance.
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Remark 3.1. The density process (Zθ
t ) is a uniformly integrable martingale if, for instance, the process θ

satisfies Novikov’s condition or, more generally, if it belongs to the class of P-BMO processes. We refer to
Kazamaki (1994) for an extensive discussion of BMO-martingales.

Following Horst & Müller (2007) we refer to the first component θS of the vector θ = (θS , θR) as the
market price of financial risk. It is exogenously given by

θS
t =

µS
t

σS
t

.

The process θR will be called the market price of external risk; it will be derived endogenously by an
equilibrium condition.

3.1 The individual optimization problem

In this section we study the optimization problem of an individual agent for a given market price of risk
θ.7 In the absence of arbitrage opportunities the derivative price process (Bθ

t ) under the pricing measure
Pθ is given by

Bθ
t = Eθ

[
hD(T, ST , RT ) +

∫ T

0

ϕD(s, Ss, Rs)ds | Ft

]

where Eθ denotes the expectation with respect to Pθ. This expression makes sense because all payoff
functions are bounded. Representing the random variables Bθ

t as stochastic integrals with respect to the
Pθ-Brownian motion W θ yields a 2-dimensional adapted process κθ = (κθ,S , κθ,R) such that

Bθ
t = Eθ[HD] +

∫ t

0

κθ
sdW θ

s

= Eθ[HD] +
∫ t

0

κθ,S
s (dWS

s + θS
s ds) +

∫ t

0

κθ,R
s (dWR

s + θR
s ds).

(4)

For the optimization problem to have a solution, we assume that fluctuations in the external risk process
translate into fluctuations of derivative prices, i.e., that the volatility κθ,R does not vanish.8 For the rest
of this section we therefore work under the following assumption.

Assumption 3.2. The derivative completes the market, i.e., the volatility process (κθ,R
t ) is almost surely

different from zero.

We denote the holdings of the agent a ∈ A in the stock and derivative at time t ∈ [0, T ] by πa,1
t and

πa,2
t respectively. Her gains from trading up to time t ∈ [0, T ] under the pricing measure Pθ using a

self-financing strategy πa = (πa,1, πa,2) that requires zero initial capital are given by

V a,θ
t (πa) =

∫ t

0

πa,1
s dSs +

∫ t

0

πa,2
s dBθ

s .

7Later we use the results of this section in order to obtain an equilibrium in terms of a solution to a BSDE.
8In the jargon of Duffie (1986) we need to guarantee that (ST , HD) forms a fundamental dividend process under Pθ. Under

standard conditions this assumption can easily be verified under P using Malliavin calculus. The difficulty is to verify the

condition under an equivalent measure. We notice that in Duffie’s Section 4 it is enough to have some (not necessarily the

same) fundamental dividend process for an equivalent measure. In our model the candidate fundamental dividend process is

the same for any possible pricing measure.
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Thus, the risk process associated with the self-financing strategy πa evolves according to the BSDE

−dY a
t (πa) = ga(t, Za

t (πa))dt− Za
t (πa)dWt with Y a

T = −(Ha + V a,θ
T (πa)). (5)

In what follows we restrict our analysis to admissible trading strategies. Admissibility guarantees that
the preceding BSDE has a unique solution.

Definition 3.3. A strategy πa is called admissible with respect to the market price of risk θ if the BSDE
(5) has a unique solution in H1

T (R,P)×H2
T (R2,P) (the spaces are defined in the appendix) and

E[〈V a,θ(πa)〉T ] < ∞ (6)

where 〈V a,θ(πa)〉 denotes the quadratic variation of (V a,θ(πa)t). The set of all admissible trading strategies
with respect to θ is denoted by Sθ.

Uniqueness of solutions of the BSDE (5) can be guaranteed under growth conditions on ga, growth
conditions on the derivative ga

z of ga respect to the z-variable and integrability conditions on the terminal
wealth from trading (Kobylanski (2000), Briand & Hu (2008), Briand & Confortola (2008)). Since the
specific integrability condition often depends on the driver, a universal definition of admissibility that
applies to all drivers is unnecessarily restrictive. It is more reasonable to define the set Sθ on a case-by-
case basis. For the moment we thus leave the exact specification of Sθ open and clarify instead the general
structure of the equilibrium dynamics.

3.1.1 Minimizing (residual) risk

The optimization problem of the agent a ∈ A under the pricing measure Pθ is given by

min
πa∈Sθ

Y a
0 (πa).

In order to obtain first order conditions for optimality it will be convenient to rewrite the agent’s optimiza-
tion problem in terms of a BSDE with terminal condition −Ha. To this end, we observe that

Y a
t (πa) = −

(
Ha + V a,θ

t (πa)
)

+
∫ T

t

(
ga(s, Za

s (πa))− πa,1
s σS

s Ssθ
S
s − πa,2

s κθ
s · θs

)
ds

−
∫ T

t

(
Za

s (πa) + πa,1
s

(
σS

s Ss

0

)
+ πa,2

s

(
κθ,S

s

κθ,R
s

))
dWs,

where κθ
s · θs stands for the Euclidean inner product of the 2-dimensional vectors κθ and θ. Since the

preferences are translation invariant, past gains from trading are not important. They do not affect future
optimal trading strategies. Hence minimizing the risk is equivalent to minimizing the residual risk, i.e.,
the risk less past trading gains. Specifically, the residual risk Ȳ a

t (πa) at time t ∈ [0, T ] associated with a
trading strategy πa is defined by

Ȳ a
t (πa) = Y a

t (πa) + V a,θ
t (πa). (7)

With the change of variables

Z̄a
s (πa) = Za

s (πa) + πa,1
s

(
σS

s Ss

0

)
+ πa,2

s κθ
s (8)
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the dynamics of the residual risk process associated with πa is captured by the BSDE

Ȳ a
t (πa) = −Ha +

∫ T

t

Ga(s, πa
s , Z̄a

s (πa)) ds−
∫ T

t

Z̄a
s (πa) dWs (9)

with terminal condition −Ha and driver

Ga(s, π, z) = ga

(
s, z − π1

(
σS

s Ss

0

)
− π2κθ

s

)
− π1σS

s Ssθ
S
s − π2κθ

s · θs. (10)

Remark 3.4. We notice that the driver (π, z) 7→ Ga(·, π, z) : R2 × R2 → R is a random function of the
independent variables π and z. Any solution the “risk BSDE” (5) yields a solution to the “residual risk
BSDE” (9) via (7) and (8) and vice versa.

From now on, we assume that the goal of agent a ∈ A is to minimize the residual risk and denote by
(Ȳ a(πa), Z̄a(πa)) the unique solution of the BSDE (9) associated with an admissible trading strategy πa.

3.1.2 The first order conditions and a sufficient condition for optimality

A candidate optimal trading strategy is given by the pointwise (with respect to z and ω) minimizer

Πa
t (z, ω) = arg min

π∈R2
Ga(t, π, z)

of the driver π 7→ Ga(t, π, z) (assuming the minimum is attained).9 The minimizer is a 2-dimensional
vector Πa(z, ω) = (Πa,1(z, ω),Πa,2(z, ω)) and is implicitly defined through the first order conditions (FOC)

ga
z1

(
s, z −Πa,1

s (z, ω)

(
σS

s Ss

0

)
−Πa,2

s (z, ω)κθ
s

)
= −θS

s (11)

and

κθ,S
s

(
ga

z1

(
s, z −Πa,1

s (z, ω)

(
σS

s Ss

0

)
−Πa,2

s (z, ω)κθ
s

)
+ θS

s

)

+ κθ,R
s

(
ga

z2

(
s, z −Πa,1

s (z, ω)

(
σS

s Ss

0

)
−Πa,2

s (z, ω)κθ
s

)
+ θR

s

)
= 0.

Here ga
zi

denotes the derivative of ga(t, z) with respect to the corresponding entry of the vector z = (z1, z2).
In the light of (11) and Assumption 3.2 the last equation is equivalent to

ga
z2

(
s, z −Πa,1

s (z, ω)

(
σS

s Ss

0

)
−Πa,2

s (z, ω)κθ
s

)
= −θR

s . (12)

Let us now assume that the BSDE with driver Ga(t,Πa
t (z, ω), z) and terminal condition −Ha has a

unique solution (Ỹ a, Z̃a). In this case
π̃a

t = Πa
t (Z̃a

t , ω)

turns out to be optimal if the BSDEs associated with an agent’s risk minimization problem satisfy a
comparison principle in the sense of the following definition.10

9We write Πa
t (·, ω) to indicate the dependence of the minimizer on the random stock prices and volatilities.

10Our definition of a comparison principle is motivated by Theorem 2.6 and Remark 2.7 of Kobylanski (2000).
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Definition 3.5. The BSDEs associated with an agent’s risk minimization problem satisfy a comparison
principle if for any admissible trading strategy πa with associated solution (Ȳ a(πa), Z̄a(πa)) of the BSDE
(9) the following holds: The inequality

Ga(t,Πa
t (Z̄a

t (πa), ω), Z̄a
t (πa)) ≤ Ga(t, πa

t , Z̄a
t (πa)) P⊗ λ-a.s.,

(where λ denotes the Lebesgue measure) implies that the residual risk associated with the strategy πa is no
smaller than the residual risk associated with Πa(Z̃a, ω) at time zero, that is,

Ỹ a
0 ≤ Ȳ a

0 (πa).

We are now ready to state the main result of this section. It clarifies under what conditions an agent’s
optimization problem has a solution under a given pricing measure. All the assumptions of the following
proposition are satisfied for the case of entropic preferences discussed in Section 4 below.

Proposition 3.6. Let Pθ be a pricing measure such that Assumption 3.2 is satisfied and assume that the
following conditions hold:

(i) The first order conditions (11) and (12) have a solution, denoted Πa
t (z, ω).

(ii) The BSDE with driver Ga(t,Πa
t (z, ω), z) and terminal condition −Ha has a unique solution (Ỹ a, Z̃a)

and the trading strategy π̃a
t = Πa

t (Z̃a
t , ω) is admissible.

(iii) The BSDEs associated with an agent’s optimization problem satisfy the comparison principle of Def-
inition 3.5.

Then the optimization problem of any agent a ∈ A has a solution, given by π̃a
t = Πa

t (Z̃a
t , ω).

Proof. By Assumption 3.2 the first order conditions (11) and (12) along with condition ii) give a candidate
solution for the agent’s optimization problem. Strict convexity of the driver z 7→ ga(·, z) implies strict
convexity of π 7→ Ga(·, π, ·) which in turn guarantees that Πa

t (z, ω) = arg minπ∈R2 Ga(t, π, z). In order to
see that the candidate is indeed optimal, let πa be any other admissible trading strategy. The associated
residual risk process is given by the first component of the unique solution (Ȳ a(πa), Z̄a(πa)) of the BSDE
with driver Ga(t, πa

t , z). By condition iii) π̃a is indeed an optimal trading strategy because

Ỹ a
0 ≤ Ȳ a

0 (πa).

Remark 3.7. The preceding arguments show that all payoffs can indeed be made at the terminal time T .
All payoffs made prior to time t0 do not affect an agent’s trading decisions at or after time t0 because of
translation invariance. All payoffs made after time t0 can be shifted to T without altering the FOCs for
optimality.

From now on we assume the agents’ optimization problems have a solution so that it makes sense to
introduce the notion of equilibrium.

10



3.2 Equilibrium and the representative agent

We assume that n ≥ 0 derivatives are available for trading; the case n = 0 covers the traditional case of
the derivative security being in zero net supply. In this case at least one agent holds a short position in
equilibrium.

Definition 3.8. A market price of external risk θ∗R which, together with the process θS makes the density
process in (3) a uniformly integrable martingale is an equilibrium market price of external risk if there
exists optimal admissible trading strategies π̃a (a ∈ A) such that

∑

a∈A
π̃a,2

t ≡ n P⊗ λ-a.s.

The process θ∗ = (θS , θ∗R) will be called an equilibrium market price of risk (equilibrium MPR).

3.2.1 Reduction to zero net supply

With our choice of preferences the equilibrium problem when an arbitrary number n of derivatives is
available for trading can be rewritten as an equilibrium problem in which the derivative is in zero supply,
i.e., when n = 0. The idea is to make the derivatives part of the agents’ endowments and to look for
a market price of risk such that the agents’ optimal demand for the derivative add up to zero. Such
an approach is typically not possible when the preferences are not translation invariant. For preferences
coming from BSDEs the approach is justified by the following lemma. It shows that if the endowment of
some agent is increased by υHD for some υ ∈ R, then her optimal trading strategy in the derivative will
decrease by υ.

Lemma 3.9. For a given MPR θ, consider the residual risk BSDE

−dȲ a
t (πa) = Ga(t, πa

t , Z̄a
t (πa))dt− Z̄a

t (πa)dWt (13)

associated with the preferences of the agent a ∈ A and an admissible trading strategy πa.

(i) If π̃a = (π̃a,1, π̃a,2) is optimal for the above BSDE with terminal condition

−Ha,

then π̂a = (π̃a,1, π̃a,2 − υ) is optimal given the terminal condition

−(Ha + υHD).

(ii) If π̃a = (π̃a,1, π̃a,2) is optimal for the above BSDE with terminal condition

−(Ha + υHD),

then π̂a = (π̃a,1, π̃a,2 + υ) is optimal given the terminal condition

−Ha.

11



Proof. In order to prove the first assertion we assume that the BSDE (13) with terminal condition −Ha

yields an optimal trading strategy π̃a = (π̃a,1, π̃a,2). In particular,

Ȳ a
0 (π̃a) ≤ Ȳ a

0 (πa) for every πa ∈ Sθ. (14)

Let us now introduce the trading strategies

π̌a = πa − (0, υ) and π̂a = π̃a − (0, υ).

In view of the representation

υHD = Eθ[υHD] +
∫ T

0

υκθ
sdW θ

s

= Eθ[υHI ] +
∫ T

0

υκθ,S
s (dWS

s + θS
s ds) +

∫ T

0

υκθ,R
s (dWR

s + θR
s ds)

= υBθ
t +

∫ T

t

υκθ,S
s (dWS

s + θS
s ds) +

∫ T

t

υκθ,R
s (dWR

s + θR
s ds),

a direct calculation shows that the process

(Y a(π̌a), Za(π̌a)) = (Ȳ a(πa)− υBθ, Z̄a(πa)− υκθ)

solves the BSDE

Y a
t (π̌a) = −(Ha + υHD) +

∫ T

t

Ga(s, π̌a, Za
s (π̌a)) ds−

∫ T

t

Za
s (π̌a) dWs.

In the light of (14) this yields

Y a
0 (π̌a) = Ȳ a

0 (πa)− υBθ
0 ≥ Ȳ a

0 (π̃a)− υBθ
0 = Y a

0 (π̂a).

This shows that π̂a = π̃a− (0, υ) is indeed optimal given the terminal condition −(Ha +υHD). The second
assertion follows similarly.

The preceding lemma shows that the equilibrium market prices of risk (if they exist) of the following
two models are the same:

• Model I: Each agent a ∈ A is initially endowed with a random payoff Ha and the equilibrium
condition reads ∑

a

π̃a,2
t ≡ n.

• Model II: Each agent a ∈ A is endowed with a random payoff Ha + υaHD such that
∑

a υa = n

and the equilibrium condition reads ∑
a

π̃a,2
t ≡ 0.

From now on we assume that the derivative payoff is equally split among the agents at time t = 0 and work
with the second model; it turns out to be more convenient for our analysis of equilibrium. Hence the risk
assessment of agent a ∈ A when she follows an admissible trading strategy πa is captured by the BSDE

−dY a
t (πa) = ga(t, Za

t (πa))dt− Za
t (πa)dWt with Y a

T (πa) = −
(

Ha +
n

|A|H
D + V a,θ

T (πa)
)

.

12



In the next section we are going to characterize a candidate equilibrium market price of external risk
in terms of a solution of a BSDE using a representative agent approach. To simplify the exposition we
restrict ourselves to an economy of two agents, A = {a, b}; the general case follows from straightforward
modifications.

3.2.2 The representative agent: preferences and optimization problem

There are many results in the literature on general equilibrium in complete markets that link competitive
equilibria to equilibria of a representative agent’s economy. The preferences of the representative agent are
usually given by a weighted average of the individual agents’ utility functions with the weights depending
on the competitive equilibrium to be supported by the representative agent. This dependence results in a
complex fixed point problem which renders the analysis and computation of equilibria quite cumbersome.
The many results on risk sharing under translation invariant preferences, in particular Barrieu & El Karoui
(2005), Jouini, Schachermayer & Touzi (2007) and Filipovic & Kupper (2008), suggest that when the
preferences are translation invariant, then all the weights are equal. Motivated by these papers our approach
is therefore to consider an agent whose risk assessments evolve according to the process

Y ab
0 = inf

F

{
Y a

0 (Ha +
n

2
HD − F ) + Y b

0 (Hb +
n

2
HD + F )

}
. (15)

Here Hi denotes the initial endowment of the agent i ∈ {a, b}, Y i(·) (with some abuse of notation) stands
for the first component of the solution to the BSDE with driver gi as a function of the terminal condition
(see also proposition A.3 in the appendix), and the infimum is taken over a suitable (square integrable or
bounded) subset of FT -measurable random variables. It has been shown by Barrieu & El Karoui (2005)
that the risk preferences induced by (15) can be represented by the solution of a BSDE with driver

gab(t, z) = inf
x
{ga(t, z − x) + gb(t, x)} (16)

and terminal condition −(Ha + Hb + nHD). In particular, only the agents’ aggregate endowment is
important. In order to solve the representative agent’s optimization problem we assume that the following
condition holds.

Assumption 3.10. The mapping z 7→ gab(·, z) is strictly convex and the infimum is attained.

The convexity condition on z 7→ gab(·, z) guarantees that the first order conditions associated with the
representative agent’s optimization problem have a solution. Sufficient conditions in terms of the individual
agents’ preferences are given in Barrieu & El Karoui (2005).

Remark 3.11. The minimizer x∗, of the mapping x 7→ ga(t, z − x) + gb(t, x) is characterized by the
equations

ga
zi

(t, z − x∗) = gb
zi

(t, x∗) (i = 1, 2).

This means that
gab(t, z) = ga(t, x) + gb(t, y)

if and only if
ga

zi
(t, x) = gb

zi
(t, y) and x + y = z.

We shall use this characterization later in order to state sufficient conditions for the existence of equilibria.
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For a given admissible trading strategy πab of the representative agent her residual risk follows the
backward dynamics

−dȲ ab
t (πab) = Gab(t, πab

t , Z̄ab
t (πab))dt− Z̄ab

t (πab)dWt with Ȳ ab
T (π) = −(Ha + Hb + nHD) (17)

where the driver Gab is defined in terms of gab by analogy to (10). The agent’s goal is to minimize her
risk over the set of admissible trading strategies. Arguing as in the case of the single agent, the convexity
condition on the driver gab yields the following characterization of the optimal strategy π̃ab for a given
MPR θ = (θS , θR):

gab
z1

(
s, Zab

s − π̃ab,1
s

(
σSSs

0

)
− π̃ab,2

s κθ
s

)
= −θS

s , (18)

and

gab
z2

(
s, Zab

s − π̃ab,1
s

(
σSSs

0

)
− π̃ab,2

s κθ
s

)
= −θR

s . (19)

Thus, if the BSDEs with driver Gab and terminal condition −(Ha + Hb + nHD) satisfy a comparison
principle and if the trading strategy π̃ab defined implicitly by the first order conditions (18) and (19) is
admissible, then the representative agent’s optimization problem has a solution.

Our goal is now twofold. First, we identify a market price of risk θ∗ of the representative agent economy,
i.e., a MPR such that the representative agent’s optimal demand for the derivative is zero at any point in
time. Then we prove that θ∗ is an equilibrium MPR of the original model.

3.2.3 Equilibria of the representative agent economy

We are now going to identify an equilibrium of the representative agent’s economy. This is achieved using
the first order conditions. The idea is to first set π̃ab,2 equal to zero in (18) and (19), then derive the optimal
strategy in the stock market from (18), plug this strategy into (19) and to finally define the desired market
price of external risk by the left hand side of (19). For this it is important that we can work with Model
II where the derivative is in zero outside net supply: setting π̃ab,2 equal to zero in (18) and (19) eliminates
the dependence of the FOCs on the (yet to be determined) quantity κθ.

Proposition 3.12. Assume that Assumption 3.10 is satisfied, and that there exists a unique solution
(Ȳ ab, Z̄ab) of the BSDE

Ȳ ab
t = −(Ha + Hb + nHD) +

∫ T

t

Ḡab(s, Z̄ab
s , ω) ds−

∫ T

t

Z̄ab
s dWs, (20)

with driver

Ḡab(s, z, ω) = gab

(
s, z −Πab,1

s (z, ω)

(
σS

s Ss

0

))
−Πab,1

s (z, ω)σS
s Ssθ

S
s ,

where Πab,1
s (z, ω) is a solution of the equation in x

gab
z1

(
s, z − x

(
σS

s Ss

0

))
= −θS

s .
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Assume further that the trading strategy π̃ab
t = (Πab,1

t (Z̄ab
t , ω), 0) is admissible, and that the representative

agent’s BSDE (17) satisfies the comparison principle of Definition 3.5 . If the process θ∗R defined by

−θ∗Rs := gab
z2

(
s, Z̄ab

s −Πab,1
s (Z̄ab

s , ω)

(
σS

s Ss

0

))
(21)

along with the market price of financial risk θS makes the density process in (3) a uniformly integrable
martingale and if Assumption 3.2 holds under θ∗ = (θS , θ∗R) then θ∗R is an equilibrium market price of
external risk of the representative agent’s economy.

Proof. For the market price of external risk θ∗R defined through (21), the trading strategy π̃ab = (π̃ab,1, 0) =
(Πab,1(Z̄ab, ω), 0) is admissible and satisfies the FOCs for optimality. Since Assumption 3.10 is satisfied,
the optimality of π̃ab under the pricing measure Pθ∗ follows from Proposition 3.6.

We notice that the solution of the BSDE (20) describes simultaneously a candidate equilibrium market
price of external risk and the equilibrium utility of the representative agent. Whether or not the candidate
process θ∗R defined through (21) makes the process Zθ∗ given by (3) a uniformly integrable martingale
needs to be checked on a case-by-case basis.

3.2.4 Equilibria of the competitive economy

We are now ready to prove our existence and characterization of equilibrium result. It states that the
equilibrium market price of external risk θ∗R of the representative agent economy is also an equilibrium
market price of external risk of the underlying competitive economy.

Theorem 3.13. Under the assumptions of Proposition 3.12 the process θ∗R is an equilibrium market price
of external risk.

Proof. For the choice of θ∗R in (21) it follows that π̃ab = (π̃ab,1, 0) given in Proposition 3.12 is optimal for
the representative agent optimization problem

min
πab∈Sθ∗

Ȳ ab
0 (πab),

where Ȳ ab
0 (πab) is given by the BSDE

−dȲ ab
t (πab) = Gab(t, πab

t , Z̄ab
t (πab))dt− Z̄ab

t (πab)dWt with Ȳ ab
T (πab) = −(Ha + Hb + nHD). (22)

We denote the individual agents’ optimal trading strategies coming from the FOC

gi
z1

(
s, Z̃i

s − π̃i,1
s

(
σS

s Ss

0

)
− π̃i,2

s κθ∗
s

)
= −θS

s , i ∈ {a, b}

and

gi
z2

(
s, Z̃i

s − π̃i,1
s

(
σS

s Ss

0

)
− π̃i,2

s κθ∗
s

)
= −θ∗Rs , i ∈ {a, b}

associated with the market price of external risk θ∗R by π̃a and π̃b, respectively. In order to prove that

π̃ab = π̃a + π̃b,
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we recall from Remark 3.11 the following link between the drivers ga, gb and gab:

ga

(
s, Z̃a

s − π̃a,1
s

(
σS

s Ss

0

)
− π̃a,2

s κθ∗
s

)
+ gb

(
s, Z̃b

s − π̃b,1
s

(
σS

s Ss

0

)
− π̃b,2

s κθ∗
s

)

= gab

(
s, Z̃a

s + Z̃b
s − (π̃a,1

s + π̃b,1
s )

(
σS

s Ss

0

)
− (π̃a,2

s + π̃b,2
s )κθ∗

s

)
.

Thus the process (
Ỹ a

t + Ỹ b
t , Z̃a

t + Z̃b
t

)
,

is a solution of the BSDE (22) associated with the trading strategy

πab := π̃a + π̃b.

By the Envelope Theorem it follows that

gab
z1

(
s, Z̃a

s + Z̃b
s − (π̃a,1 + π̃b,1)

(
σS

s Ss

0

)
− (π̃a,2 + π̃b,2)κθ

s

)
= −θS

s ,

and

gab
z2

(
s, Z̃a

s + Z̃b
s − (π̃a,1 + π̃b,1)

(
σS

s Ss

0

)
− (π̃a,2 + π̃b,2)κθ

s

)
= −θ∗Rs .

Thus the strategy π̃a+π̃b satisfies the representative agent’s first order conditions. Recall now that (π̃ab,1, 0)
also satisfies the representative agent’s first order conditions. Since strict convexity of π 7→ Ga(·, π, ·) implies
that the first order conditions have a unique solution it follows that

π̃a,2 + π̃b,2 ≡ 0.

3.3 Delineation against time-additive preferences

Let us briefly benchmark our BSDE approach against the traditional approach of establishing the existence
of stochastic equilibria in pure exchange economies with time additive preferences. To this end, we consider
a model in which agents maximize expected utility from consuming a perishable good. The agent a ∈ A is
characterized by her initial endowment ea and a von-Neumann-Morgenstern expected utility function

Ua(c) = E

[∫ T

0

ua(t, ct)dt

]

defined on some set of stochastic consumption processes c = (ct) and their goal is to maximize the utility
from consumption subject to a budget constraint. The aggregate output of the economy follows an exoge-
nous Itô process K = (Kt). The agents can invest in a risky asset that pays K, lend and borrow funds
at a short rate process r = (rt) and their goal is to maximize utility subject to their budget constraints;
see, e.g., Riedel (2001) for further model details. In such a model the representative agent’s instantaneous
utility function is given by

v(t, k) = sup∑
a ca=k

∑
a

λaua(t, ca)
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for weights (λa) and the equilibrium state-price deflator ψt at time t ∈ [0, T ] is obtained by evaluating the
representative agent’s marginal utility function at the exogenous supply Kt. That is:

ψt = vk(t,Kt).

In our model the consumption good is money and due to the assumption of translation invariance,
all payoffs (and hence consumption) can be shifted to the terminal date. This is not possible when the
consumption good is perishable as it is typically assumed with time-additive utility functions. Furthermore,
in our model there is no budget constraint. We assume that the risk-free rate is exogenous and that
borrowing is unrestricted. In this case translation invariance guarantees that borrowing a certain amount
of money just reduces the agents’ utilities by that amount at the terminal time. In order to clarify some of
the more technical differences between our model the time-additive case, let us assume for simplicity that
the agents can only trade the derivative, but not the stock. In this case the driver Ḡab of the BSDE (20)
is given by

gab(t, z) = inf∑
za=z

∑
a

ga(t, za)

and the candidate equilibrium MPR is given implicitly via the derivative of gab with respect to z. The key
observation from (21) is that this derivative is to be evaluated at an endogenous process, namely Z̄ab, to
obtain the equilibrium MPR. Thus, the main technical difference between our model and the time-additive
case is that in our case the equilibrium MPR is given in terms of the derivative of the instantaneous utility
function gab evaluated at the endogenous process Z̄ab while for time-additive preferences, the equilibrium
state price deflator is given by the derivative of the instantaneous utility function v evaluated at the
exogenous supply process (Kt).

4 An example with entropic utilities

In this section we consider an example which lends itself to a complete analysis of the equilibrium dynamics.
We assume throughout that the agents are expected exponential utility maximizers, i.e., that the driver of
the BSDE associated with the preferences of the agent a ∈ A is given by

ga(t, z) =
1

2γa
||z||2.

Furthermore, we assume that the following technical conditions hold.

Assumption 4.1. (i) The market price of financial risk is of the form:

(θS
t )2 = Γ(t, Rt)

for a uniformly bounded non-negative function Γ. Moreover, x → Γ(·, x) has uniformly bounded 1st

and 2nd derivative.

(ii) The payoff functions hD(T, S, R) and ϕD(t, S, R) are increasing in the R-variable and strictly in-
creasing on a set of positive measure.11

We are now ready to formulate the main result of this section.
11The same result holds for (strictly) decreasing functions.
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Theorem 4.2. Let n be the number of derivatives and assume that the agents are expected exponential
utility maximizers. Under Assumption 4.1 the following holds:

(i) There exists a unique solution (Y, Z) ∈ H∞T (R,P)×H2
T (R2,P) of the BSDE

Yt = Hrep −
∫ T

t

ZsdWs +
1
2

∫ T

t

[−(z2
s)2 + (θS

s )2 − 2θS
s z1

s ] ds (23)

with terminal condition

Hrep :=
Ha + Hb + nHD

γR
where γR = γa + γb.

The second component of the integrand part Z = (z1, z2) of the solution (Y,Z) defines an equilibrium
market price of external risk θ∗R, i.e.,

θ∗Rt = z2
t .

(ii) The market price of external risk can be represented in terms of a uniformly (in the time variable)
bounded Lipschitz continuous function v̄(t, ·) of the process (lnS,R):

z2
t = v̄(t, ln St, Rt). (24)

(iii) The random variables z2
t are almost surely differentiable with respect to γR and n. The derivative

∂nz2
t of z2

t with respect to n is strictly positive:

sign(∂nz2
t ) = 1 P-a.s.

That is, the equilibrium market price of risk decreases with the number of available derivatives.

(iv) The model is complete in equilibrium.

Outline of the proof
The theorem is proven in several steps. In Section 4.1 we derive the optimal trading strategy for a
given pricing measure assuming that Assumption 3.2 holds. Section 4.2 characterizes the dynamics of the
equilibrium market price of external risk:

• in Subsection 4.2.1 we use the specific structure of the candidate optimal trading strategy of Section
4.1 together with Theorem 3.13 in order to derive the equilibrium BSDE.

• in Subsection 4.2.2 we show that the candidate equilibrium market price of external risk θ∗R is
bounded and carry out the sensitivity analysis with respect to n and γR.

• in Subsection 4.2.3 we show that θ∗R can be written as a Lipschitz continuous function of the process
(ln S, R).

The latter result allows us to prove that Assumption 3.2 is indeed satisfied; this proof is carried out in
Section 4.2.4. In Section 4.3.1 we illustrate how the analysis can be simplified in the case of full equilibrium.
Finally, we show how our methodology extends to a more general class of preferences.
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4.1 The individual optimization problem

Our goal is to establish the existence of a bounded equilibrium market price of external risk. Since
the market price of financial risk is bounded by assumption it is thus enough to consider the individual
optimization problems only for bounded θ. Using the same argument as in Example 1 of Kobylanski (2000)
one can show that if a trading strategy belongs to the set

{
πa | E

[
exp(−kV a,θ

T (πa))
]

< ∞ for some k > 0
}

then the BSDE (5) has a unique solution. In order to guarantee that the solution belongs to the right
space and that the comparison principle holds we require the exponential moment condition also for −k

and chose the set of admissible trading strategies to be

Sθ =
{

πa | E
[
exp(±kV a,θ

T (πa))
]

< ∞ for some k > 0 and (6) holds
}

. (25)

Lemma 4.3. If πa ∈ Sθ, then the unique solutions of BSDE (5) belongs to H1
T (R,P)×H2

T (R2,P).

Proof. Let us assume for simplicity that γa = 1 (this can be achieved by a rescaling argument). Then
with the usual exponential change of variables

ζa = −(Ha + V a,θ
T (πa)), yt = exp (Y a

t (πa)), zt = ytZ
a
t (πa),

our BSDE (5) becomes

yt = exp (ζa)−
∫ T

t

zsdWs,

for process (y, z) ∈ H2
T (R,P)×H2

T (R2,P). In particular, yt = E[exp (ζa)|Ft]. Now, let

mt = E[exp (−ζa)|Ft].

The Cauchy-Schwarz inequality for conditional expectations yields

ytmt = E[exp (ζa)|Ft] E[exp (−ζa)|Ft] ≥ 1.

Thus
mt ≥ 1

yt
. (26)

By the definition of Sθ the random variable exp (−ζa) has finite moments. Hence, the martingale repre-
sentation theorem and the Burkholder-Davis-Gundy inequality imply that

E
[

sup
0≤t≤T

mt

]2

< ∞. (27)

Recall that
||Za

t (πa)|| = ||zt||
yt

≤ ||zt||mt,

where the inequality comes from (26). This and (27) will yield via Cauchy-Schwarz inequality that

E

(∫ T

0

||Za
t (πa)||2dt

) 1
2

≤ E


 sup

0≤t≤T
mt

(∫ T

0

||zt||2dt

) 1
2



≤
[
E

[
sup

0≤t≤T
mt

]2
] 1

2
[
E

(∫ T

0

||zt||2dt

)] 1
2

< ∞.
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The Burkholder-Davis-Gundy inequality in turn gives

E
[

sup
0≤t≤T

∣∣∣∣
∫ t

0

Za
s (πa)dWs

∣∣∣∣
]
≤ K E

(∫ T

0

||Za
t (πa)||2dt

) 1
2

< ∞. (28)

As a consequence, the process
∫ ·
0
Za

t (πa)dWt is a true martingale. From BSDE (5) it follows that

1
2

∫ T

0

‖Za
t (πa)‖2dt = Y a

0 (πa)− ζa +
∫ T

0

Za
t (πa)dWt (29)

By applying the expectation operator to (29) we get that Za(πa) ∈ H2
T (R,P). Since

Y a
t (πa) = Y a

0 (πa)− 1
2

∫ t

0

(Za
u(πa))2du +

∫ t

0

Za
u(πa)dWu,

from (28) it follows that E
[
sup0≤t≤T |Y a

t (πa)| ] < ∞. Therefore Y a(πa) ∈ H1
T (R,P).

2

4.1.1 The candidate strategy

In order to obtain a candidate optimal strategy for the individual agents we apply the change of variables
(8) to the driver ga. From (12) we derive that

π̃a,2
s = Πa,2

s (Z̃a
s , ω) =

γaθR
s + z̃a,2

s

κθ,R
s

.

Plugging this into (11) the optimal trading strategy in the stock market is calculated as

π̃a,1
s = Πa,1

s (Z̃a
s , ω) =

γa[θS
s κθ,R

s − θR
s κθ,S

s ] + z̃a,1
s κθ,R

s − z̃a,2
s κθ,S

s

σS
s Ssκ

θ,R
s

.

Here Z̃a = (z̃a,1, z̃a,2) is the integrand part of the unique solution to the BSDE with terminal condition
−Ha and linear driver

Ga(s,Πa
s(Z, ω), Z) = −z1θS

s − z2θR
s −

γa

2
[(θS

s )2 + (θR
s )2]. (30)

Up to an additive constant the terminal wealth associated with π̃a is calculated as

−Ha + γa

∫ T

0

θS
u

(
dWS

u +
1
2
θS

u du

)
+ γa

∫ T

0

θR
u

(
dWR

u +
1
2
θR

u du

)
.

Since θ is assumed to be bounded this shows that π̃a belongs to (25). Hence π̃a it is indeed admissible.

4.1.2 Optimality

In order to establish optimality of π̃a we apply Proposition 3.6. The conditions (i) and (ii) have already
been verified. In order to prove that the BSDE associated with the agent’s utility optimization problem
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satisfies a comparison principle we compare the solution (Ỹ a, Z̃a) associated with the strategy π̃a with the
solution

(
Ȳ a(πa), Z̄a(πa)

)
coming from another admissible strategy πa. Then

Ỹ a
t − Ȳ a

t (πa) = −
∫ T

t

(Z̃a
s − Z̄a

s (πa)) dWs +
∫ T

t

[
Ga(s, Πa(Z̃a

s , ω), Z̃a
s )−Ga(s, πa

s , Z̄a
s (πa))

]
ds

= −
∫ T

t

(Z̃a
s − Z̄a

s (πa)) dWs +
∫ T

t

[
Ga(s, Πa(Z̃a

s , ω), Z̃a
s (πa))−Ga(s, Πa(Z̄a

s (πa), ω), Z̄a
s (πa))

+ Ga(s,Πa(Z̄a
s (πa), ω), Z̄a

s (πa))−Ga(s, πa
s , Z̄a

s (πa))
]
ds.

Since Πa
t (z, ω) = arg minπ∈R2 Ga(t, π, z) it follows that

Ga(s, Πa(Z̄a
s (πa), ω), Z̄a

s (πa))−Ga(s, πa
s , Z̄a

s (πa)) ≤ 0.

Furthermore, in view of (30) we have

Ga(s,Πa(Z̃a
s , ω), Z̃a

s )−Ga(s,Πa(Z̄a
s (πa), ω), Z̄a

s (πa)) = −(Z̃a
s − Z̄a

s (πa)) · θs.

In particular we get

Ỹ a
0 − Ȳ a

0 (πa) ≤ −
∫ T

0

(Z̃a
s − Z̄a

s (πa)) dWs −
∫ T

0

(Z̃a
s − Z̄a

s (πa)) · θs ds

= −
∫ T

0

(Z̃a
s − Z̄a

s (πa)) dW θ
s ,

(31)

where W θ
t = Wt +

∫ t

0
θsds. Next we argue that the process

∫ ·
0
(Z̃a

s − Z̄a
s (πa)) dW θ

s is a (true) martingale.
Indeed the integrability condition (6) along with equation (8) and Lemma 4.3 show that

E
[ ∫ T

0

||Z̃a
s − Z̄a

s (πa)||2 ds
]

< ∞.

Furthermore since the process θ is bounded, the density process (Zθ
t ) of (3) has finite moments of any

order. Therefore Burkholder-Davis-Gundy and Cauchy-Schwarz inequalities in turn give

Eθ
[

sup
0≤t≤T

∣∣∣∣
∫ t

0

(
Z̃a

s − Z̄a
s (πa)

)
dWs

∣∣∣∣
]

≤ K Eθ
[( ∫ T

0

||Za
t (πa)− Z̄a

s (πa)||2dt
) 1

2
]

≤ K̄

[
E

(∫ T

0

||Z̃a
s − Z̄a

s (πa)||2 ds

)] 1
2

< ∞,

and this guarantees that the process
∫ ·
0

(
Z̃a

s − Z̄a
s (πa)

)
dW θ

s is a (true) martingale under the measure Pθ

with respect to which W θ
t = Wt +

∫ t

0
θsds is a 2-dimensional standard Brownian motion. Thus, taking

conditional expectation of (31) under the measure Pθ we get

Ỹ a
0 ≤ Ȳ a

0 (πa).

This shows that the comparison principle of Definition 3.5 holds, so π̃a is an optimal trading strategy by
Proposition 3.6.
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4.2 Equilibrium dynamics

In this section we derive the BSDE that characterizes the candidate equilibrium market price of external risk
(assuming that market completeness prevails in equilibrium) and establish the differentiability properties
of the candidate equilibrium MPR.

4.2.1 The equilibrium BSDE

In view of Proposition 3.12 and Theorem 3.13 a candidate equilibrium MPR is obtained by first calculating
the driver gab and then showing that the BSDE (20) with driver Ḡab has a unique solution. The candidate
MPR is then given by equation (21). Direct calculations show that in our setting the driver gab defined in
(16) is given by

gab(t, z) =
1

2γR
||z||2 with γR = γa + γb,

that the function z 7→ Πab,1
t (z, ω) of Proposition 3.12 equals

Πab,1
s (z, ω) =

z1 + γRθS
s

σsSs
,

and the candidate equilibrium market price of external risk of equation (21) is given by

θ∗R = − z2

γR

where z2 comes from the integrand part of the solution to the BSDE (20) with driver

Ḡab(s, z, ω) =
1

2γR
(z2)2 − θS

s z1 − γR

2
(θS

s )2

and terminal condition Hrep; see also the results of Section 4.1.1. Multiplying this BSDE by − 1
γR

we see
that θ∗R is given by the second component of the integrand part Z = (z1, z2) of the solution of the BSDE

Yt = Hrep −
∫ T

t

ZsdWs +
1
2

∫ T

t

[−(z2
s)2 + (θS

s )2 − 2θS
s z1

s ] ds. (32)

Theorem 4.4. The equilibrium BSDE (23) has a unique solution in H∞T (R,P)×H2
T (R2,P).

Proof. Since the market price of financial risk and the terminal condition are bounded, the assertion
follows from Kobylanski (2000). 2

The preceding considerations show that we have identified an equilibrium MPR if we can show that the
process z2 is bounded and that Assumption 3.2 holds under Pθ with θ = (θS , z2). To this end, we start
with some preliminaries. First, we observe that there exists an equivalent measure P̃ with respect to which

W̃S
t = WS

t +
∫ t

0

θS
u du and W̃R

t = WR
t

are independent Brownian motions with respect to the filtration (Ft); for reasons that will later become
clear we shall actually work under P̃. Second, for our analysis of equilibrium we only need to consider θS ,
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not the specific drift or the volatility coefficients. For the equilibrium analysis we may thus with no loss of
generality normalize the stock price volatility to one and assume from now on that

dSt

St
= θS

t dt + dWS
t = dW̃S

t .

Furthermore, we shall restrict ourselves to the case ϕa = ϕb = 0, hence Hrep is of the form (with some
abuse of notation)

Hrep = Hrep(ST , RT ).

The general case follows from straightforward modifications.

4.2.2 A BSDE representation of the equilibrium market price of risk

Let (Y,Z) be the unique solution of the BSDE (32). The general BSDE theory suggests that z2 can be
obtained in terms of the Malliavin derivatives of Y with respect to the Brownian motion WR. Since θS

depends on the external risk factor it is not convenient, though, to differentiate the BSDE (32) under P.
The reason is the product term −2θS

t z2
t whose Malliavin derivative depends on the derivative of θS . It is

more convenient to “hide” this term in the equivalent change of measure from P to P̃ and to derive the
representation (24) of z2 under P̃.12 Under the measure P̃ the BSDE (23) takes the more convenient form

Yt = Hrep(ST , RT )−
∫ T

t

ZsdW̃s +
1
2

∫ T

t

[−(z2
s)2 + (θS

s )2] ds. (33)

Let D̃R be the Malliavin derivative operator with respect to the Brownian motion W̃R. Since the
change of measure does not affect WR, it coincides with the Malliavin operator DR with respect to WR.
It follows from the results of Ankirchner, Imkeller & Dos Reis (2007) and Horst & Müller (2007) that the
derivative processes (D̃R

u Yt)T
t=u and (D̃R

u Zt)T
t=u of the process Y and Z at time u ∈ [0, T ] with respect to

Brownian motion W̃R exist and that z2
t is a version of D̃R

t Yt and it is uniformly bounded. More precisely,
the following holds.

Proposition 4.5. There exists a unique solution (Y, Z) to the BSDE (33). The Malliavin derivatives
D̃R

u Yt and D̃R
u Zt exist for any u ∈ [0, T ] and satisfy the linear BSDE

D̃R
u Yt = D̃R

u Hrep(ST , RT ) +
∫ T

t

1
2
bΓx(s,Rs) ds−

∫ T

t

D̃R
u ZsdW̃s −

∫ T

t

z2
sD̃R

u z2
sds, (34)

where Γx denotes the derivative with respect to x of the function Γ(s, x). Furthermore, the process (z2
t ) is

uniformly bounded and a version of (D̃R
t Yt).

In preparation for the proof of differentiability z2 we are now going to show how the preceding proposi-
tion can be applied to characterize z2 in terms of a BSDE. To this end, we denote by H

rep
x2 the derivative

with respect to x2 of the function Hrep(x1, x2), and introduce a probability measure P̂ by

dP̂
dP̃

:= E
(
−

∫ T

0

(
0
z2
u

)
dW̃u

)
.

12This is possible because v̄ is deterministic. Loosely speaking we change the distribution of the process (S, R), but not the

set of possible trajectories.
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Since the external risk process (Rt) follows a Brownian motion with drift

D̃R
0 Hrep(ST , RT ) = D̃R

u Hrep(ST , RT ) = bHrep
x2

(ST , RT ) (0 ≤ u ≤ T ).

Applying conditional expectation to (34) under the measure P̂ for u = 0 and u = t yields

DR
0 Ỹt = EP̂

[
bHrep

x2
(ST , RT ) +

∫ T

t

1
2
bΓx(s,Rs) ds | Ft

]
= DR

t Ỹt = z2
t (0 ≤ t ≤ T ).

In particular, we see from (34) that the pair of processes (z2, D̃R
0 Z) solves the BSDE

dMt = [MtN
2
t −

1
2
bΓx(t, Rt)]dt + NtdW̃t (35)

where N = (N1, N2) and the terminal condition is given by

MT = bHrep
x2

(ST , RT ).

We are now ready to prove differentiability of the candidate equilibrium market price of risk.

Theorem 4.6. The random variables z2
t for t ∈ [0, T ] are almost surely differentiable with respect to γR

and n. The derivative ∂nz2
t of z2

t with respect to n is strictly positive:

sign(∂nz2
t ) = 1.

Proof. We recall from Proposition 4.5 that z2 is given by the first component of a solution (M,N) of the
BSDE

Mt = bHrep
x2

(ST , RT ) +
∫ T

t

[−MsN
2
s +

1
2
bΓx(s,Rs)− θS

s N1
s ]ds−

∫ T

t

NsdWs. (36)

Furthermore, (Mt) is bounded. Thus, since θS , Γx and Hrep
x2

are also bounded, standard calculations yield
that

∫ ·
0
NsWs is a BMO martingale. From here, we proceed in two steps.

(i) First, we formally differentiate BSDE (36) with respect to α ∈ {γR, n} from which we obtain

∂αMt = b∂αHrep
x2

(ST , RT )−
∫ T

t

∂αNsdWs +
∫ T

t

[−N2
s ∂αMs −Ms∂αN2

s − θS
s ∂αN1

s ]ds. (37)

Since (Mt) is bounded and (
∫ ·
0
NsdWs) is a BMO martingale, Theorem 10 in Briand & Hu (2008)

yields that the above BSDE has a unique solution. Now, arguments similar to those used in the proof
of Theorem 12 in Briand & Hu (2008) suffice to show that the solution of the BSDE (37) is indeed
the derivative of the solution of BSDE (36). Without going into further detail, the arguments consist
in comparing difference quotients of (M,N) in the parameter α against (∂αM, ∂αN) and then taking
the limit in the appropriate norm.

(ii) In order to establish the sign property we perform a change of measure to the measure P∗ with respect
to which dW ∗

t = dWt − (θS
t ,Mt)dt is a Brownian motion. This simplifies the BSDE (37) to

∂αMt = b∂nHrep
x2

(ST , RT )−
∫ T

t

∂αNsdW ∗
s +

∫ T

t

[−N2
s ∂αMs]ds.
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Moreover
∂nHrep

x2
(ST , RT ) = HD

x2
(ST , RT ).

Our goal is now to express the process (∂nMt) in terms of the derivative HD
x2

. This can be achieved
by eliminating the Lebesgue integral. To this end, we define a stochastic process (et)T

t=0 by

et := exp
(
−

∫ t

0

N2
s ds

)

and apply Itô’s formula to (et∂nMt) in order to obtain

etMt = b eT HD
x2

(ST , RT )−
∫ T

t

esMsdW ∗
s .

Taking conditional expectations with respect to P∗ yields

et∂nMt = EP
∗[

eT b HD
x2

(ST , RT )
∣∣Ft

]
.

Since (et) and b are strictly positive it follows from Assumption 4.1(ii) that

sign
(
∂nMt

)
= 1.

4.2.3 Lipschitz continuity of the equilibrium market price of risk

Using the link between backward stochastic and partial differential equations we can now prove that z2

can be represented in terms of a Lipschitz continuous function of the forward process. To this end, we first
recall that we are currently working under the probability measure P̃ with respect to which the forward
process (St, Rt) is given by

(
eW̃ S

t − t
2 , Rt

)
for a P̃-Brownian motion W̃ . For reasons that will become clear

later it is more convenient to work with the forward process

Xt = (X1
t , X2

t ) = (lnSt, Rt) = (W̃S
t − t

2
, Rt).

and the correspondingly transformed payoff functions

H̄j(x1, x2) := Hj (ex1 , x2) for j ∈ {a, b, D, rep}.

We notice that by assumption the mapping H̄j
x2

inherits uniform Lipschitz continuity from Hj
x2

. We
further notice that the preceding transformation does not affect the representation of equilibrium dynamics.
In particular, the candidate equilibrium MPR is still given by the first component M of the solution (M, N)
of the BSDE (35). Since M is bounded conditions (H4) and (H5) of Kobylanski (2000) are satisfied so by
her Theorem 3.8 the process (D̃R

0 Yt) can be represented as a continuous function v̄ of the forward process
X. Specifically (with our choice of transformation) v̄ is a viscosity solution of the PDE

−v̄t + Lv̄ − F (t, x, v̄, σ · ∇xv̄) = 0

with terminal condition
v̄(T, ·) = bH̄rep

x2
(·, ·)
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where the operator L is defined by

Lv̄ = −1
2
v̄x1x1 −

b2

2
v̄x2x2 +

t

2
v̄x1 − atv̄x2

and
F (t, x, y, z) = −yz2 +

b

2
Γx(t, x2).

Here v̄x1x1 , v̄x2x2 , v̄x1 , v̄x2 are partial derivatives of the function v̄(t, x1, x2).

Lemma 4.7. The function v̄(t, ·) is Lipschitz continuous uniformly on compact time intervals.

Proof. Our proof is based on Theorem 3.3 (b) of Jakobsen & Karlsen (2002). In their notation we
have that

tr[Aθ(t, x, Dv̄)D2v̄] =
1
2
v̄x1x1 +

b2

2
v̄x2x2

and

fθ(t, x, r, p, X) = rp2 +
t

2
p1 − atp2 − b

2
Γx(t, x2).

Hence conditions (C1), (C2), (C3), (C6) and (C8) of Jakobsen & Karlsen (2002) (page 505) are satisfied.
For condition (C2) notice now that

fθ(t, x, r, p, X)− fθ(t, x, s, p, X) ≥ γ̄R(r − s),

where
γ̄R := p21{p2≤0}.

Conditions (C3) and (C8) are obviously satisfied and (C6) follows from at being bounded, and from Γx(t, x2)
being Lipschitz. Thus, our assertion follows from their result since the terminal function is Lipschitz
continuous. 2

The preceding lemma immediately yields the following corollary and hence finishes the proof of Theorem
4.2 provided that Assumption 3.2 holds.

Corollary 4.8. The process z2 satisfies

z2
t = v̄(t, ln St, Rt)

where v̄(t, ·) is a Lipschitz continuous uniformly on compact time intervals. This representation holds under
any probability measure that is equivalent to P̃.

4.2.4 A representation of the equilibrium derivative price volatility

In a final step we are going to verify that the equilibrium volatility κθ∗,R is P-a.s. strictly positive. For
this, we shall use the Clark-Haussmann formula for diffusion forward processes. The mentioned forward
process is Xt := (X1

t , X2
t ) = (lnSt, Rt). By Corollary 4.8, under Pθ∗ the forward process satisfies13

dXt = f(t,Xt)dt + g(t,Xt)dW θ∗
t ,

13Here it is convenient to work with logarithmic stock prices. The formula becomes much more cumbersome when working

with the actual stock price process.
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where

f(t, x) =

(
− 1

2 t

at − v̄(t, x)

)
and g(t, x) =

(
1 0
0 b

)
.

Let us now denote by Φ(s, t) the solution of the following first variation equation associated with Xt:

dΦ(t, s) = fx(t,Xt)Φ(t, s)dt + gx(t, Xt)Φ(t, s)dW θ∗
t (t > s), Φ(t, t) = I2,

where

fx =

(
0 0

−v̄x1 −v̄x2

)
and gx =

(
0
0

)

are the generalized derivatives. From this we see that Φ1,2(t, s) ≡ 0 because Φ1,2(t, t) = 0 so

dΦ22(t, s) = [−Φ22(t, s)v̄x2(t,Xt)]dt, Φ22(s, s) = 1.

Hence Φ22(t, s) is positive. Since the transformed payoff function

H̄D(x1, x2) := HD (ex1 , x2)

is differentiable, the Clark-Haussmann formula shows that the process κθ∗,R in (4) can be represented as

κθ∗,R
t = bEθ∗ [λt|Ft],

where

λt =
∫ T

t

H̄D
x2

(lnSs, Rs)Φ22(s, t) ds =
∫ T

t

HD
x2

(Ss, Rs)Φ22(s, t) ds.

Hence κθ∗,R is positive because the payoff HD is increasing in the external risk factor by assumption.

4.3 Extensions and modifications

We close this section with some comments on how the analysis simplifies in the case of full equilibrium and
how our methodology carries over to more general preferences functionals and

4.3.1 Full equilibrium

Our analysis can be simplified when both assets are priced in equilibrium. In order to see this, let us
consider the benchmark case where WR is the only source of uncertainty and put b = 1 and at = 0. This is
essentially the framework of Anderson & Raimondo (2008) for a single risk factor; extending our arguments
to multiple risk factors is straightforward. If WR is the only source of uncertainty, then the equilibrium
BSDE is given by

Yt = Hrep(RT )−
∫ T

t

ZsdWR
s − 1

2

∫ T

t

Z2
s ds

where Zt is a one-dimensional process. Using the exponential change of variables y = exp(Y ) this equation
can be transformed into the linear BSDE

yt = eHrep(RT ) −
∫ T

t

zsdWR
s .
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Such a transformation is not possible for the BSDE (23) where only the second component of Z appears
quadratically. The unique solution of the preceding equation is given by

yt = EP
[
eHrep(RT ) | Ft

]
and zt = EP

[
Hrep

x (RT )eHrep(RT ) | Ft

]
,

where H
rep
x denotes the first order derivative of the function Hrep(x). In particular, yt = u(t,WR

t ) and
zt = v(t,WR

t ) where
u(t, x) := EP

[
eHrep(RT ) | WR

t = x
]

and v(t, x) is the derivative of u(t, x) with respect to the space variable:

v(t, x) := EP
[
Hrep

x (RT )eHrep(RT ) | WR
t = x

]
.

Under our assumption on the payoff functions the mappings u, v : [0, T ] × R → R are uniformly bounded
and u is uniformly bounded away from zero. If the second derivative H

rep
xx is also bounded, then the

function
vx(t, x) = EP

[
Hrep

xx (RT )eHrep(RT ) +
(
Hrep

x (RT )
)2

eHrep(RT ) | WR
t = x

]

is bounded and z can be represented as a smooth function with bounded derivative of the forward process
WR. Since the solution (Y,Z) of the non-linear BSDE is given by

Yt = ln(yt) and Zt =
zt

yt

a direct calculation using the smoothness properties of u and v shows that Zt can be expressed in terms
of a Lipschitz continuous function of WR. Hence we can again apply the Haussmann formula (which now
simplifies to a one-dimensional ODE) to establish market completeness in equilibrium.

4.3.2 Semi-Entropic Utilities

Our methodology carries over to the case where the driver of the BSDE associated with agent a ∈ A is
given by

ga(t, z) = −αaθSz1 +
1

2γa

[
(1− αa)(z1)2 + (z2)2

]
for αa ∈ {0, 1}.

For αa = 0 this is the standard dynamic entropic risk measure. We refer to the case αa = 1 as the
semi-entropic case. A direct calculation shows that for αa, αb ∈ {0, 1} the representative agent driver gab

defined in (16) is given by

gab(t, z) = −γaαa(1− αb)
2

(θS
t )2 − γbαb(1− αa)

2
(θS

t )2 − θS
t z1(αa + αb − αaαb)

+
(1− αa)(1− αb)

2γR
|z1|2 +

1
2γR

|z2|2.

For semi-entropic utilities we will not have uniqueness of the optimal trading strategy for the individual
agent risk minimization problem. In fact any position in stocks may lead to an optimal strategy. However
for a given position in stock the optimal strategy in the derivative market is unique. This observation
shows that the equilibrium market price of external risk is given by the second component of the integrand
part Z = (z1, z2) of the solution (Y, Z) of the BSDE

Yt = Hrep −
∫ T

t

ZsdWs +
1
2

∫ T

t

[−(z2
s)2 + η(θS

s )2 − 2θS
s z1

s ] ds.
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Here η = 0 corresponds to the case where both agents have semi-entropic preferences; η = γa

γa+γb
if

agent b has semi-entropic preferences while agent a has entropic preferences and η = 1 when both agents
are entropic.

5 A Numerical Example

The BSDE characterization of the equilibrium market price of risk makes our analysis easily amenable to
an efficient numerical analysis. In this section we report some simulations for a benchmark model with
two agents. We assume that (Rt) describes the dynamics of a temperature process in California during the
summer months May, June, July and view (St) as the share price of some energy provider.

5.1 Forward dynamics and payoffs

We consider the time interval [0, T ] with T = 1.5 where each 0.5 time units represents one month and
assume the temperature process follows the dynamics

Rt = R0 + 4t + 2Wt.

This model captures seasonal variations in average daytime temperatures for the months of May, June and
July.14 The model is a simple linear approximation of the data presented in the link, centered around 18
degrees Celsius. In our analysis we shall give special attention to R0 ∈ [−4, 7] corresponding to a variation
of 14 to 25 degrees Celsius.
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Figure 1: Typical trajectories of the forward processes.

5.1.1 Stock prices

The stock price process (St) follows a diffusion of the form (2). Following the arguments given above we
normalize the stock price volatility without loss of generality to one. The market price of financial risk

14see http://www.wrcc.dri.edu/cgi-bin/cliMONtavt.pl?casjos
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(the drift under our normalization condition) is chosen as a bounded, smooth function that increases with
the temperature. The latter reflects the idea that the demand for energy increases with the temperature
as a result of an increasing use of air conditioners which leads to higher revenues and hence higher stock
prices. Specifically, we chose

(θS
t )2 = Γ(t, Rt) = 8

(
arctan(Rt) +

π

2
)

but our numerical method would work with alternative models as well.

5.1.2 Payoffs

The energy provider hedges its exposure to the temperature risk by issuing a weather derivative that pays
a yield ϕD which decreases with the expected daytime temperature which is 4t at time t ∈ [0, T ]. That
is, the energy provider pays less “interest” in periods where the expected demand for energy and hence
expected revenues are low and more when temperatures and expected revenues are high. Specifically, we
choose the payoff rate

ϕD(t, St, Rt) = exp
{
−M (4t−Rt)

+
}

(M > 0).

The demand for the weather derivatives comes from an orange farmer (“agent a”) and the owner of a
golf resort (“agent b”). The agents have entropic risk preferences with risk tolerance coefficients γa = 1.0
and γb = 2.0, respectively. They are endowed with ci (i ∈ {a, b}) shares of the stock and their income
rates are exposed to temperature risk. The orange farmer prefers seasonal temperatures around 22 ◦C
corresponding to the benchmark value Ra = +4 in our temperature model. For the owner of the golf resort
we choose 17 ◦C (i.e. Rb = −1) as the reference temperature reflecting the fact that turf grass optimal
growth temperature belongs to the interval15 [15.6 ◦C, 23.9 ◦C]. Specifically, we model their incomes by

Hi = ciST +
∫ T

0

exp{−M i(Rt −Ri)2}dt (i ∈ {a, b})

for positive constants ca, cb,Ma,M b ∈ R+. The following table summarizes our choice of parameters:

γa γb γR M Ma M b ca cb Ra Rb

1.0 2.0 3.0 2.0 0.5 0.5 0.5 0.5 4.0 −1.0

5.2 Solver methodology

In order to simulate our model we compute enough trajectories of the forward process (S,R) using the Euler
method. Subsequently we simulate the equilibrium market price of external risk using the representative
agent BSDE and then use the trajectories of θ∗R to solve the BSDEs for the derivative price process and
equilibrium risk exposure. Although the BSDE for the representative agent is of quadratic type we have
shown the quadratic term is indeed bounded (see Theorem 4.2) so we can use any existing numerical
scheme for Lipschitz BSDEs. Our method of choice is a modification of the algorithm by Bender & Denk
(2007). For a given equidistant partition π = {0, h, 2h, ..., T − h, T} of the time interval [0, T ] and the
corresponding discretization Xh and Hh of the forward process and payoff functions, respectively, we set

15http://www.nmmastergardeners.org/Manual%20etc/other%20references/turfgrasses.htm
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(Y (0,h), Z(0,h)) = 0 and define the processes Y (m,h) and Z(m,h) recursively by

Y
(m,h)
ih = E

[
Hh − h

M−1∑

j=i

f(ih,Xh
jh, Z

(m−1,h)
jh )

∣∣∣Fih

]
, (38)

Z
(m,h)
ih = E

[∆Wih

h

(
Hh − h

M−1∑

j=i+1

f(ih, Xh
jh, Z

(m−1,h)
jh )

)∣∣∣Fih

]
,

where ∆Wih = W(i+1)h − Wih denotes a Brownian increment. We take advantage of the fact that the
driver does not depend on the process Y , since only Y0 is needed the independence of the driver on Y

allows us to ignore (38) until the last iteration. Because the scheme is explicit we are able to update the
iteration sequence as we go and so the scheme converges in one iteration. To improve the stability of
the algorithm we inject the a priori results concerning the boundedness of the several processes into the
numerical method. We employ as well several known BSDE heuristics on how to choose base functions or
how to stabilize the results for the linear growth BSDEs. The results were obtained by using about 200000
paths simulations, a time partition of 31 to 51 points and for the conditional expectation we employed the
usual projection techniques on polynomial bases.

5.3 Results

Unless otherwise stated or the corresponding parameter varying, all the plots of this section are obtained
by choosing (γa, γb) = (1.0, 2.0), (s0, r0) = (1.0, 1.0) and n = 1, i.e., for one share of the derivative.

5.3.1 Sample path prices and strategies
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(a) Sample path of external MPR.
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(b) Sample path of the derivative price.

Figure 2: Sample path of market price of external risk (left) and derivative price (right).

In Figure 2 we display the paths of the external equilibrium MPR (left) and the derivative price process
(right) that correspond to the sample trajectories of Figure 1. We see that the derivative price increases
as the market price of risk decreases. This is intuitive in equilibrium: when the MPR decreases, the
agents demand a lower risk premium so the derivative price increases. Figure 3 shows the corresponding
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trading strategies in the derivative. The dashed line is the sum of the agents’ demand; it clearly matches
the equilibrium condition. The owner of the golf resort (agent b) initially holds a long position in the
derivative and then unwinds her position as the temperature increases. Given the agent’s payoff function,
the derivative provides a better hedge against temperature fluctuations when the temperature is low. When
the temperature increases, the exposure of the orange farmer to temperature risk dominates the exposure
of the golf resort owner to the same source of risk so the derivative is more valuable for the orange farmer.
This explains the increase in the orange farmer’s holdings and the decrease in the position of the golf resort
owner. Close to maturity the strategies are more unstable. It could be that the orange farmer unwinds his
position in reaction to the drop in the temperature and the resulting decrease in the derivative’s payoff.
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Figure 3: Sample path of the agents’ positions in the derivative.

Figure 4 displays the equilibrium derivative prices as a function of the starting point of the forward
process (left) and the aggregate risk tolerance (right) when both agents have entropic utility functions.
The increasing derivative price in the temperature reflects the fact that the yield curve increases in the
external risk component. The equilibrium price decreases with the overall tolerance towards risk; the less
risk averse the agents are, the less they are ready to invest into a hedge against the external risk factor.

5.3.2 The benefits of financial innovation

Figure 5 illustrates the benefits of financial innovation in our model. The left plot shows the risk in
equilibrium when the agent b can trade one unit of the derivative (dark color) and her risk in a benchmark
model where no derivatives are available for trade (light color).16

If the derivative is not available for trading the agents cannot hedge their exposure to temperature risk
and face an incomplete market situation. Although the risk pattern is the same in both cases the risk is
lower when the agent has more assets available for trading and hence more hedging opportunities. This
effect is more visible when we look at the relative rather than absolute reduction in her risk exposure. The

16Notice that since we measure risk negative numbers indicate high utility.
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Figure 4: Derivative price as a function of model parameters.

0

2

4−4 −2 0 2 4 6

−4

−3

−2

Stock S

Temp. R
0

R
e

si
d

u
a

l R
is

k

(a) Risk in model with one derivative (dark) and

in a model without derivative (light)

0

1

2

3

4 −4 −2 0 2 4 6

−50

−40

−30

−20

−10

0

10

Temp. R
0

Stock S
0

%
 R

e
si

d
u

a
l R

is
k

(b) Risk in a model with one derivative as a

percentage of the risk in a model with none.

Figure 5: Risk reduction: the benefits of financial innovation (for agent b).

plot on the right shows that the risk is 2% to 8% lower in a model with one derivative issued. A similar
pattern can be observed for agent a. The effects of financial innovation become even more evident if the
derivative accounts for a higher proportion of the overall wealth. When the number of available derivatives
is increased to n = 6, for instance, we observe a risk reduction of up to 65% (Figure 6).

5.3.3 Further results

We also studied the dependence of equilibrium risk exposure on preferences and risk tolerances. Figure 7(a)
shows the representative agent’s risk for the entropic and semi-entropic risk measures. The risk perception
is lower for the entropic case. This is intuitive as the agents overall risk aversion is larger in the entropic
case. Figure 7(b) displays the representative agent’s risk as a function of the overall risk tolerance.
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Figure 6: Risk reduction: the benefits of many derivatives (for agent b)

0

2

4

−4 −2 0 2 4 6

−14

−12

−10

−8

−6

−4

−2

0

Stock S
0

Temp. R
0

R
e

si
d

u
a

l R
is

k

(a) Risk for entropic (dark) and semi-

entropic (light) preferences.

1
2

3
4

1

2

3

4

−10

−8

−6

−4

−2

0

γ
a

γ
b

R
e

si
d

u
a

l R
is

k

(b) Risk in the entropic case as a function of

risk tolerance.

Figure 7: Representative agents’ risk for (semi-) entropic preferences.

Finally, we plot the price of one share (unit) of the derivative as a function of the number of shares

issued and the corresponding revenues in Figure 8. The left plot shows the quantities B
(n)
0
n where B

(n)
0

denotes the equilibrium derivative price for the yield curve n · ϕD. The unit price is decreasing in n, i.e.,
the price of one share decreases with the number of shares issued. The associated revenues are displayed
in the right plot. We see that for our choice of payoff profiles the revenues are maximal if the issuer sells
about 6 units of the derivative. A theoretical analysis of the issuer’s optimal policy is beyond the scope of
this paper and left for future research.

34



0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Number of Derivatives

P
r
i
c
e
 
p
e
r
 
d
r
i
v
a
t
i
v
e

1 3 5 7 9

2

2.5

3

3.5

4

4.5

5

5.5

6

Number of Derivatives

R
e
v
e
n
u
e
s

Figure 8: Price per share and revenues as a function of the number of shares issued.

6 Conclusion

In this paper we provided a general framework within which to price financial securities written on non-
tradable (external) risk factors. In addition, there is an exogenously priced security whose market price of
risk depends on the external risk factor so we have a partial equilibrium model.

We assumed that the agents’ risk preferences can be described by a dynamic convex risk measure
generated by a backward stochastic differential equation. We solved the individual and representative
agents’ optimization problems and characterized a certain class of equilibrium market prices of risk in
terms of a solution to a BSDE. For the specific case of entropic risk measures we solve the optimization
problem in closed form. The equilibrium market price of external risk was characterized in this case by the
unique solution of a quadratic BSDE. In turn this gives the equilibrium price process via a linear BSDE.
The BSDE approach gave us insight on the structure of the equilibria. In particular, we identified the sign
of the derivatives of the market price of risk with respect to the number of available derivatives. Numerical
simulations revealed more properties of the equilibria. For instance, a significant reduction in risk achieved
by the issuance of the derivative.

Our main goal was to extend the standard representative approach of general equilibrium theory to
monetary utility functions and to allow for certain classes of market prices of financial risk that depend on
an external risk factor. Many avenues are still open for future research. The applicability of our results
in general and the characterization of equilibrium results in particular are limited “only” by the lack of
existence, uniqueness and differentiability results for solution of BSDEs beyond the quadratic case. This
is a field of active research; a major contribution to this theory was well beyond the scope of this paper. It
would also be interesting to consider the problem of optimal derivative design. The simulations of Section
5 can be viewed as a first quantitative step in that direction. Our Figure 5 suggests that for a given payoff
profile there exists a revenue maximizing number of shares. Finally, we did not consider models where the
assumption of market completion is violated so our method does not cover the incomplete markets.
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A Notation, BSDEs and Malliavin derivatives

In this appendix we summarize some of our notation and briefly review some results on backward stochastic
differential equations, the link between BSDEs and dynamic monetary risk measures, and the notion of
Malliavin derivatives. Throughout this paper we use the following notation:

• For a vector x = (xi)n
i=1 ∈ Rn we denote by ‖x‖ =

√∑n
i=1(xi)2 its Euclidean norm.

• The inner product of x, y ∈ Rn is denoted x · y =
∑n

i=1 xiyi.

Furthermore, we introduce the following spaces of stochastic processes:

• Hp
T (Rm,P) the space of all progressively measurable processes (Xt)0≤t≤T with values in Rm such

that EP[(
∫ T

0
||Xs||2ds)p/2] < ∞.

• H∞T (Rm,P) the space of all progressively measurable processes (Xt)0≤t≤T with values in Rm which
are P−a.s. bounded for almost every t.

A.1 BSDEs

Definition A.1. (i) A backward stochastic differential equation is an equation of the form

Yt = H −
∫ T

t

ZsdWs +
∫ T

t

F (s, Ys, Zs)ds (0 ≤ t ≤ T ) (39)

where W is a standard n-dimensional Brownian motion on a probability space (Ω,F ,P) equipped with
the standard Brownian filtration (Ft). The time T is called the terminal time, while the random
function F and the FT -measurable random variable H are referred to as the driver and terminal

condition, respectively.

(ii) A solution consists of an adapted process Y and an adapted integrand Z that satisfy the integral
equation (39).

Existence and uniqueness of solution results for BSDEs in the space H∞T (R,P)×H2
T (R2,P) have been

established for one-dimensional equations under a quadratic growth condition in z:

|F (t, y, z)| ≤ c0 + c1‖z‖2,

and under integrability conditions under the terminal value H. We refer to the seminal paper by Kobylanski
(2000) for existence results for bounded terminal values and to Ankirchner, Imkeller & Dos Reis (2007) or
Briand & Confortola (2008) for BSDEs with random Lipschitz coefficients. Comparison results for BSDEs
with quadratic growth are also available in the literature (see, e.g., Theorem 2.6 in Kobylanski (2000)).
They give sufficient conditions on the drivers F 1 and F 2 of the BSDEs

Y i
t = Hi −

∫ T

t

Zi
sdWs +

∫ T

t

F i(s, Y i
s , Zi

s)ds (i = 1, 2)

such that H1 ≤ H2 and F 1(t, Y 1, Z1) ≤ F 2(t, Y 1, Z1) a.s. implies Y 1
t ≤ Y 2

t a.s.
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Definition A.2. A forward-backward stochastic differential equation (FBSDE) is a system of the form

Xt = X0 +
∫ t

0

f(s, Xs)ds +
∫ t

0

g(s, Xs)dWs (0 ≤ t ≤ T ) (40)

Yt = H −
∫ T

t

ZsdWs +
∫ T

t

F (s,Xs, Ys, Zs)ds (0 ≤ t ≤ T ) (41)

A.2 Dynamic risk measures and BSDEs

There is a strong connection between time-consistent translation invariant utility functions and BSDE. The
following is based on Barrieu & El Karoui (2009). Let (Ω,F , (Ft),P) be a filtered probability space and
L(Ft) be a subset (essentially bounded, square integrable) of the set of Ft-measurable random variables.
A (strongly) time-consistent dynamic convex risk measure is a family of convex risk measures (%t)0≤t≤T

where
%t : L(FT ) → L(Ft)

such that such that for all times t, t + s ∈ [0, T ] the time-t risk %t(X) of a position X ∈ X is obtained by
evaluating the time-(t + s) risk of X from the point of view of time t, i.e.,

%t(X) = %t (%t+s(X)) .

It has been shown by Barrieu & El Karoui (2005) that solutions to BSDEs whose driver is independent
of Y give rise to a rather large class of dynamic convex risk measures. More precisely, they proved the
following:

Proposition A.3. Let (Y (H), Z(H)) be the unique (or maximal) solution to a BSDE

Yt(H) = H −
∫ T

t

F (s, Zs)ds−
∫ T

t

ZsdWs

and assume that the driver F depends in a convex manner on Z. Then the process (Yt) has all the properties
of a dynamic convex risk measure. That is:

• For all m ∈ R it holds that Yt(H + m) = Yt(H)−m.

• The process (Yt(H)) is strongly time-consistent: Yt(H) = Yt (Yt+s(H)).

• For all H1,H1 ∈ X and λ ∈ [0, 1] we have

Yt (λH1 + (1− λ)H2) ≤ λYt(H1) + (1− λ)Yt(H2).

To date it is an open question if any strongly time-consistent dynamic risk measure can be represented
by a BSDE. In discrete time where uncertainty is generated by a family of independent Brownian motions,
this is in fact true, as has been shown in a recent paper by Cheridito et al. (2009).
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A.3 Malliavin derivatives

For completeness we also review the notion of Malliavin derivatives; for details we refer to the textbook
of Nualart (1995). We denote by W be an d-dimensional Brownian motion and introduce the space of
random variables

S =

{
ξ : ξ = F

(∫ T

0

h1
ddWt, . . . ,

∫ T

0

hd
ddWt

)}

where F : Rn → Rd is has bounded partial derivatives of all orders and hi ∈ L2([0, T ];Rd). For any such
random variable the d-dimensional operator D : S → L2(Ω× [0, T ])d is defined by

Di
θξ =

d∑

j=1

∂F

∂xi,j

(∫ T

0

h1
ddWt, . . . ,

∫ T

0

hd
ddWt

)
hi,j

θ

and for p > 1 the norm ‖ξ‖1,p is defined by

‖ξ‖1,p =


E


|ξ|p +

(∫ T

0

|Dθξ|2
)p/2







1/p

.

The operator D has a closed extension to the space D1,p, the closure of S with respect to ‖ · ‖1,p.
Let us now consider the diffusion process (Mt) defined by the SDE

dMt = b(t, Mt)dt + σ(t,Mt)dWt

where b(t, ·) ∈ Rd and σ(t, ·) = diag(σ1(t, ·), . . . , σd(t, ·)) is a diagonal matrix. We assume that the diffusion
coefficients are differentiable in x with bounded derivatives and fix a differentiable function g : Rd → R.
With

∆i,t := exp
(∫ t

0

σi
x(s,M i

s)dW i
s +

∫ t

0

{
bi
x(s,M i

s)−
1
2
(σi

x)2(s,M i
s)

}
ds

)

the Malliavin derivative Di
ug(Mt) of g(Mt) at time u with respect to the i-th Wiener process is given by

Di
ug(Mt) = 1{t≥u}gi

x(Mt)σ(u,Mu)∆i,t∆−1
i,u.

For our external risk process R of Section 2 (see equation (1)) this means that

D2
uRt = 1{t≥u}b

A.3.1 Malliavin derivatives of BSDEs with drivers of quadratic growth

Let us conclude with the Malliavin differentiability of quadratic forward-backward SDEs. The following
was first proved in Ankirchner, Imkeller & Dos Reis (2007) and further extended in Dos Reis (2009). It
gives sufficient conditions on the driver F and terminal condition H such that the solution (X, Y, Z) of the
FBSDE system (40), (41) is Malliavin differentiable. More precisely suppose that the following holds:

• Let f and g be deterministic continuously differentiable functions with bounded derivatives.

• H is a bounded continuously differentiable function and its derivative grows at most linearly in x.
F is a deterministic function, continuously differentiable in (x, y, z) and for some C > 0 satisfies
|F (t, x, y, z)| ≤ C(1 + |y|+ |z|2),

|Fx(t, x, y, z)| ≤ C(1 + |y|+ |z|2) , |Fy(t, x, y, z)| ≤ C, and |Fz(t, x, y, z)| ≤ C(1 + |z|).
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Then (X, Y, Z) ∈ L1,2(0, T ; (D1,2)n×d × (D1,2)d × (D1,2)d×d). A version of (Di
θYt, D

i
θZt); 0 ≤ θ, t ≤ T} is

given, for each 1 ≤ i ≤ d, by

Di
θXt = 0, Di

θYt = 0, Di
θZt = 0, 0 ≤ t < θ ≤ T ;

and for 0 ≤ θ ≤ t ≤ T

Di
θXt = g(θ,Xθ) +

∫ t

θ

∇f(s, Xs)DθXsds +
∫ t

θ

∇g(s,Xs)DθXsdWs

Di
θYt = Di

θH −
∫ T

t

Di
θZs dWs +

∫ T

t

(∇F )(s,Xs, Ys, Zs) · (Di
θXs, D

i
θYs, D

i
θZs)ds.

Moreover {DtYt; 0 ≤ t ≤ T} is a version of {Zt; 0 ≤ t ≤ T}.
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