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Abstract

We study the long run behaviour of interactive Markov chains on infinite product spaces. In
view of microstructure models of financial markets, the interaction has both a local and a global
component. The convergence of such Markov chains is analyzed on the microscopic level and
on the macroscopic level of empirical fields. We give sufficient conditions for convergence on
the macroscopic level. Using a perturbation of the Dobrushin—Vasserstein contraction technique
we show that macroscopic convergence implies weak convergence of the underlying Markov
chain. This extends the basic convergence theorem of Vasserstein for locally interacting Markov
chains to the case where an additional global component appears in the interaction. (©) 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider interactive Markov chains on a product space S = C” where C is some
finite state space and A is an infinite set of sites or agents. Thus, the state space of
the Markov chain is the set of configurations x = (x%),ca which specify an individual
state for each agent a € A. Suppose that the transition kernel is of the form

EDE | EZCD) (1)
acA

In such a situation, the behaviour of the agents is interactive insofar as the probability
n?(x; c) that agent a € A switches to the state ¢ € C does not only depend on his own

present state but may involve the states of other agents.
The convergence behaviour of Markov chains of the form (1) has been investigated
in depth in the case where the interaction is purely local. This means that 7%(x;-) only
depends on the states in some neighborhood N(a). In this case II may be viewed as
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a Feller kernel on the compact state space S. Using Dobrushin’s contraction technique
and the Feller property, Vasserstein (1969) has shown that the Markov chain converges
weakly to some unique equilibrium distribution p if the interaction is not too strong.

In recent years there is an increasing interest in dynamical microstructure models
of financial markets which involve interacting preferences and expectations of a large
number of agents; see, e.g., Brock and Hommes (1997). In such a context, it becomes
natural to introduce a global component into the interaction, i.e., to introduce some
dependence on the average behaviour of the configuration x € S into the transition laws
7. In Follmer (1994) and Horst (2000) such Markov chains are used as a random
environment for the evolution of stock prices, viewed as a sequence of temporary price
equilibria. In order to analyze the asymptotic behaviour of such price processes, we
need convergence results for the underlying Markov chain. This is the motivation for
the present paper.

Our goal is to clarify some of the mathematical problems which arise in the pres-
ence of both a local and a global component in the interaction. We consider the case
A = 7¢ where the average behaviour of a configuration x € S is described by the em-
pirical distribution ¢(x) or, more completely by the empirical field R(x). Due to the
global dependence of the interaction the Feller property of IT will typically be lost.
In order to prove convergence of the Markov chain {X;};en governed by the kernel
II, we proceed in two steps. Due to a spatial law of large numbers for empirical
fields, the macroscopic process {R(X;)}:cn can be analyzed separately. Using contrac-
tion arguments with respect to a suitable metric, we obtain the convergence of the
macroscopic process to some random field; this part is based on Horst (2000) and fills
a gap in Follmer (1979a). Our main result in Theorem 3.20 is based on a perturbation
of the Dobrushin—Vasserstein contraction technique. We show that macroscopic con-
vergence implies weak convergence of the underlying microscopic process {X;}/cn to
the same limiting random field. This may be viewed as an extension of Vasserstein’s
convergence theorem to the case where the interaction has both a local and a global
component.

In the dynamical model (1) the individual transition laws n? have an interactive
structure, but the transition to a new configuration is made independently by the dif-
ferent agents. An interactive structure in the transition itself is captured by a model
where the measure [I(x;-) is not a product measure but a Gibbs measure with respect
to a system of conditional probabilities y* depending on the configuration x. Based on
Horst (2000) and Horst (2001) we show how our convergence results can be extended
to this general setting.

2. Locally and globally interacting Markov chains

Let C be some finite state space. We denote by A the d-dimensional integer lattice
7% and by S := C” the compact space of all configurations x = (x),ea with x? € C.
A probability measure u on S will be called a random field. The space .#(S) of
all such random fields is compact with respect to the topology of weak convergence.
Since the state space C is finite, the class Z(S) of all local functions which depend
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only on finitely many coordinates is dense in %(S) with respect to the topology of
uniform convergence. Thus, a sequence {1 },cn of random fields converges weakly to
we M(S) iff

w(f) = /Sfdu/_ﬁoﬂ(f) (feZ(S)). (2)

Our aim is to analyze some aspects of the long run behaviour of interactive Markov
chains on S with transition kernel I1(x;dy). Let us first assume that the kernel IT takes
the product form

GRS | EAED) 3)

acA

In such a model, the state of a single agent a € A changes in reaction to the situation
x € § according to the probability distribution 7?(x;-) on C. The individual transition
probabilities 7%(x;-) have an interactive structure since they depend not only on the
individual state x“. Note, however, that the transition to a new configuration is made
independently at different sites. In (10) below, we will admit an interactive structure in
the transition itself. Such a situation is captured by a model where the measure II(x; )
is not a product measure, but a Gibbs measure with respect to a system of conditional
probabilities depending on the configuration x.

The convergence of interactive Markov chains of the form (3) has been investigated
in depth in the case where the interaction is purely local, i.e., under the assumption that
the individual transition law 7(x;-) only depends on the local situation (x” )beN(a) 1N
some finite “neighborhood” N(a); see, e.g., Follmer (1979b), Lebowitz et al. (1990) or
Vasserstein (1969). In such a situation, the stochastic kernel IT has the Feller property,
ie.,

mfe):= /Sf(X)U(- ;dx) € €(S)

whenever f € %(S). This property is crucial for the basic convergence theorem in
Vasserstein (1969): under suitable contraction bounds on the interaction between
different sites Vasserstein (1969) establishes weak convergence of the Markov chain
to some unique equilibrium distribution v in the sense that

Jim @IT'(f) = v(f)

for all f € 4(S) and any initial distribution p € .#(S). Due to (2), weak convergence
of the sequence {uIT'},cy may be viewed as a notion of local convergence.

The purpose of the present paper is to introduce a macroscopic component both
into the interaction and into the notion of convergence. This means that for a given
configuration x = (x*),ca €S, the influence of x at site a € A is not only felt through
the local situation (x? )beN(a) in some neighborhood N(a) of a but also through some
global aspects of x. In the presence of a global component in the interaction, the Feller
property of the transition kernel IT will typically be lost, and so we cannot apply the
method of Vasserstein (1969) in order to study the asymptotic behaviour of the Markov
chain on S.

In the following simple example where the transition behaviour at site a € A depends
both on the individual state x* and on an empirical average m(x) associated with x,
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this problem is easily solved because we can study separately the convergence on the
macroscopic and on the microscopic level.

Example 2.1. Let C={0,1} and denote by S; the set of all configurations such that
the empirical average associated with the configuration x € S| exists along a suitable
sequence of finite sets A, T A:

1
Sy = {xGS: dm(x) := lim m Z xa}.

For x € S} we assume that

(s ) = m(x", m(x); -) (4)
where 7 is a transition probability from C x [0,1] to C, and
(x; ) = [ [ o, m(x); ) (5)
acA

for any x € §). It follows from the strong law of large numbers that

1 1

lim —— Y y*=lim — > w(x“mx);1) I(x;-)as.
e |A,,| acA, e |An| a€eA,

The product-measure II(x;-) given by (5) is therefore concentrated on the set Sj, and

the empirical average satisfies

m(y) = F(m(x)) := m(x)n(1,m(x); 1) 4 (1 — m(x))n(0, m(x); 1)

for II(x;-)-a.e. y €S;. Thus, the Markov chain {X;};cn with transition probability IT
on S; induces almost surely a deterministic sequence of empirical averages {m(X;)}sen.
The dynamics of this “macroscopic process” is specified by the iteration of the function
F acting on the interval [0,1]. For any starting point x €S), the process {X;}/en
may therefore be viewed as a Markov chain evolving in the time inhomogeneous but
deterministic environment {m,},cn defined recursively by

mo=m(x) and my, :=F(m_1) (t=1).

Suppose now that the macroscopic process converges to some m* € [0, 1]. In this case,
it is easily seen that we obtain weak convergence of the Markov chain {X;},cn to the
unique equilibrium u* of the Feller kernel

(x5 dy) = [ o, m; &),
acA

This convergence result is a special case of Theorem 3.20 below. The preceding argu-
ment illustrates the method of separating the analysis of macroscopic and microscopic
convergence.

Let us now consider the case where the individual behaviour is influenced both by
an empirical average and by the situation in some neighborhood. We fix / > 0 and
define the neighborhood of an agent a € A as

N(a):={beA: |b—a|l <I}.
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If the transition probability n(x;-) depends both on some average of x and on the val-
ues x” (b € N(a)) then the analysis of the convergence behaviour of the Markov chain
becomes more involved. Only in very special cases such as the following example, we
can still obtain a simple macroscopic equation for the deterministic evolution of the
sequence of empirical averages {m(X;)}en-

Example 2.2 (Follmer, 1994). As an illustration of the interplay between the long run
behaviour on the level of configurations and the asymptotics of the sequence of em-
pirical averages {m(X;)};en, we fix constants o, 8,7 > 0, and consider the following
simple voter model with C ={0, 1}: For x € S}, the individual transition law 7%(x;-) is
described as the convex combination

m(x; 1) = ap(x) + fm®(x) + ym(x), (6)

where o + f + y=1. Here, m?(x) is the proportion of ‘1’ in the neighborhood N(a).
It is easy to see that the sequence of empirical averages satisfies almost surely the
deterministic dynamics

m(X1) = of{m(X;) p(1) + (1 — m(X,)) p(0)} + (1 — 0)m(X,).
Thus, the macroscopic process {m(X;)};en converges almost surely to
R )
1+ p(0) = p(1)
It follows from Theorem 3.20 below that the microscopic process {X;};cn converges
in law to the unique equilibrium of the Feller kernel

My (x;) = [ 2Cem™s )
acA

where the probability distribution n%(x,m*;-) on C takes the form
7(x,m*; 1) =ap(x?) + pm(x) + ym™.

Thus, the long run behaviour of the microscopic process {X;},cn is determined by the
unique limit of the macroscopic process {m(X;)}sen-

The next example shows that we will typically not obtain a simple equation which
describes the dynamics of the sequence of empirical averages {m(X;)};en.

Example 2.3. Consider the following generalization of the voter model (6). For x € Sy,
the individual transition probabilities can be described by a measurable mapping
g : CIN@I % [0,1] — [0,1] in the sense that

n(x; 1) = g({x" Y sen(a)» m(x)). (7)

Typically, we cannot expect that there exist a function F:[0,1] — [0, 1] such that
m(X+1)=F(m(X;)). Nevertheless, we will show that the macroscopic process
{m(X;)}:en converges almost surely if the mapping ¢ satisfies a suitable contraction
condition in its second argument; see Example 3.11 below. Due to Theorem 3.20 below,
this will imply weak convergence of the microscopic process {X;}sen.
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We are now going to specify the mathematical framework which allows us to analyze
the long run behaviour of the Markov chain {X;},cn both on the macroscopic and on
the microscopic level. To this end, we introduce the family of shift-transformations
0, (a€ A) on S defined by (0,x)(b)=x**".

Definition 2.4. (i) A probability measure u € .#(S) is called homogeneous, if u is
invariant under the shift maps 6,. By

Mp(S) :={ue M(S): pn=pob, foral ac A}

we denote the class of all homogeneous random fields ¢ on S.

(i1) A homogeneous probability measure p € .#,(S) is called ergodic, if u satisfies a
0-1-law on the o-field of all shift invariant events. The class of all ergodic probability
measures ¢ on S is denoted by ., (S).

For a given n € N we put
A, :=[—nmn‘NA

and denote by S, the set of all configuration x € S such that the empirical field R(x),
defined as the weak limit

1
R() = lim o > d0a(-) (®)
"aen

exists and belongs to .#,(S). The empirical field R(x) carries all macroscopic informa-
tion about the configuration x = (x*),eca € S,. In particular, the empirical distribution

ow)= lim 03 Be()
"aen,
is given as the one-dimensional marginal distribution of R(x).
Consider the product kernel IT defined by the transition laws n“ in (7). Proposition
3.1 below shows that the measure II(x;-) (x €S.) is concentrated on the set S, and
that the empirical average satisfies

. 1 “
m(y) = lim —Z y
e |A”|a€An

= lim L Z (0ux, m(x); 1)

n—oo |An|a€An

/n(z,m(x); 1)R(x)(dz)
= G(R(x))

for II(x;-)-a.e. y €S,. Thus, we have to consider the full dynamics of the sequence of
empirical fields {R(X;)}:cn even if, as in Example 2.3, the behaviour of agent a € A
depends on R(x) only on the empirical average m(x). Our aim is to formulate condi-
tions on the individual transition laws which guarantee convergence of the sequence of
empirical fields {R(X;)};en and to analyze the interplay between convergence of the
Markov chain {X;};cn on the macroscopic level and on the microscopic level.
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2.1. Macroscopic interaction: independent transitions

Let us now be more specific about the structure of the individual transition probabili-
ties 7?. We assume that the interaction is spatially homogeneous and that the interactive
influence of the present configuration x at site a is felt both through the local situa-
tion in the neighborhood N(a) of a and through the average situation throughout the
whole system. This average situation is described by the empirical distribution ¢(x) or,
more completely, by the empirical field R(x) associated with x € S,. Thus, we consider
individual transition laws which take the form

Tca(x; ) = TER(x)(HaX; )

where m,(x;-) is a stochastic kernel from S x .#,(S) to C.

Assumption 2.5. The probability laws {m,(x;-)}recs satisfy a spatial Markov property
of order / in their dependence on the present configuration:

Tu(04x; ) =1y (0, ;) if O,x =0,y on N(a).

Moreover, we assume that the mapping u — m,(x; ) is continuous.

Let us now fix a homogeneous random field p € .#,(S) and a configuration x € S.
It follows from our Assumption 2.5 that

0,(x-) = [ mulOuxs ) 9)

acA

defines a Feller kernel on the configuration space S. In particular,

I(x; ) := Hgey(x;-) = H TR (Oax; -)
ac€A
defines a stochastic kernel from S, to S. In fact, we will see in Proposition 3.1 below
that IT may be viewed as a stochastic kernel on the configuration space S.. In contrast
to the stochastic kerels I1,, the kernel II typically does not have the Feller property,

due to the macroscopic dependence on the present configuration x via the empirical
field R(x).

2.2. Macroscopic interaction: interactive transitions

Let us now extend the previous setting by introducing an interactive structure into
the transition itself. This idea is captured by a model where II(x;-) is not a product
measure, but a Gibbs measure with respect to a system of conditional probabilities y*
depending on the configuration x; see, e.g., Georgii (1989).

In order to make this more precise, we fix for any configuration x € S and for every
homogeneous random field u on S, a local specification y** = (y2" )uen; here p7" is
a stochastic kernel from C*~{4} to C which specifies the transition behaviour of agent
a €A, given a boundary condition v on A — {a}, i.e., the new states of the other
agents.
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We assume that the mapping u — y;"(-;v) is continuous, and that y™# satisfies a
Markov property of order / both in its dependence on the boundary condition and on
the present configuration: For any fixed x € S, we have

vt Civ)=y"Csw) if v=w on N(a) — {a}
and for each fixed boundary condition v on A — {a}, we have
YR 50) = (3 0) if x = on N(a),

If the transition to a new configuration is made independently by different agents, given
the configuration x, the preceding conditions reduce to our Assumption 2.5. We also
assume that the interaction is spatially homogeneous:

7a G5 00) =" (s0) 00 (a€A).

Due to Dobrushin’s fundamental uniqueness theorem, the specification y*# deter-
mines a unique random field I7,(x;-) if we impose a suitable contraction condition on
the specification; see, e.g., Georgii (1989), Theorem 8.7. Thus, the family of conditional
probabilities (y%8*)) s defines a stochastic kernel

II(x;+) == g (x;+) (10)

from S, to S; the product structure (3) is included as a special case. In fact, we will
see that IT may be viewed as a stochastic kernel on the configuration space S,.

3. Convergence theorems

We are now ready to study the dynamics of the interactive Markov chain {X};en
on the state space S, defined by the general transition kernel

TI(x; ) = gy (x;-)

introduced in (10). In a first step, we use the following spatial law of large numbers for
the random fields I1,(x;-) in order to view II as a transition kernel on the configuration
space S.. For the proof we refer to Horst (2000) or to Horst (2001); in the special
product case (3) the argument is much simpler and can be found in Follmer (1979a).

Proposition 3.1. For all x€ S, and p e 4,(S), the measure II,(x;-) is concentrated
on the set S.. For I1,(x;-)-a.e. y€S,, the empirical field R(y) takes the form

R(y)(~):/SHu(Z;')R(X)(dZ)-

Let x € S,. The preceding proposition shows that
RO = /S Mz ORG)(dz) = /S oz IRE(A2) (11)

for II(x;-)-a.e. y€S,. In particular, we have

(x;S,) =1



H. Follmer, U. Horstl Stochastic Processes and their Applications 96 (2001) 99-121 107

for any x € S,, and so we will use S, as the state space of the Markov chain {X;},en
with transition kernel IT. We denote by P, the distribution of the chain {X;},cn with
initial state x € S,. Since a configuration x € S, induces an ergodic empirical field R(x),
the microscopic process {X;}ien induces Py-a.s. the macroscopic process {R(X;)}ien
with state space .#,.(S).

Let us now show that the spatial law of large numbers for ergodic empirical fields
allows us to analyze the microscopic and the macroscopic process separately. In view
of (11) the macroscopic process satisfies

R(Xi11) = R(X) T rex,) Py-a.s.
i.e., the random field R(X;,1) is P,-a.s. determined by the empirical field R(X;). In
other words, we have
R(X,)=R} P.-a.s.,
where we define the sequence of ergodic random fields {R}};en by
o =R(x) and Ry, :=Rjlp =Rpllgy---Hp: (t€N). (12)

In this sense, for any initial state x €S,, the microscopic process may be viewed as a
Markov chain evolving in a time inhomogeneous but deterministic environment {R} };cn
which is generated by the macroscopic process. In particular, the law of the random
variable X, takes the form

7 (x; )= (g - Mg )(x; ).

Our aim is now to study the asymptotics of the Markov chain {X;};cn both on the
microscopic level and on the macroscopic level of empirical fields. Suppose that the
microscopic process converges in law to some equilibrium v, in the sense that

/ @ = / Fdve (fEEES)).
S S

In this case, the sequence of empirical fields {R} };en = {R(x)IT' };en converges weakly
to the measure

7() = /S V.(REY(dz).

Thus, Proposition 3.1 implies that we have at the same time convergence of macro-
scopic quantities of the form

/ F(@RCX)(dz) = lim, . ﬁ 3 S0X) (fEES))
"aen,
along P,-almost all paths of the microscopic process to [ f(z)vy(dz). In this sense,
microscopic convergence implies macroscopic convergence. Sections 3.2, 3.3 and 3.4
may be viewed as a converse construction: Sections 3.2 and 3.3 provide a direct proof
of macroscopic convergence. We will formulate conditions which guarantee that the
macroscopic process {R(X;)},en satisfies almost surely the contraction condition

d(R(Xi41), R(X,)) < yd(R(X;), R(Xi—1)) (7 <1)
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with respect to a suitable metric d on .#(S), and this yields weak convergence of the
sequence {R(X;)};en. The metric d will be introduced in the Section 3.1. In Section
3.4, we will show that macroscopic convergence implies microscopic convergence.

3.1. A metric for random fields

Let us denote by 4,(f) the oscillation of a function f on S at site a € A, i.e.,

Aa(f) = sup{|f(x) = f(¥)|: x=y off a}
and by

ACf) = sup{|f(x) = F(»)]: x,y €S}
the oscillation of f on S. For any f € %(S) we have
A <Y Aa(f).
a€A

We introduce a metric d on the class .#(S) of all random field on S by

= O
A= SIS T Au( /)

where 1 denotes a positive constant which will be specified later.

(wve 4(S)) (13)

Remark 3.2. We have

o < sup B ) )
rew(s)  Dog 4a(f) FEB(S) A1)
where ||u— v|| denotes the total variation of the signed measure y —v on S. The proof

of the following proposition shows that

< ||,U, - VH’

d(,LL, V) < dV(:ua V)'

Here, dy denotes the Vasserstein distance on .Z(S), i.e.,

._ lu(f) = v, .
dy(p,v) = sup{L(f) .je(g(S)}
and
o |f(x) — f(y)l}
un =s{ HOC

is the Lipschitz coefficient of the function f with respect to the metric

ds(x,y) = 27" 0y
aceA

on the configuration space S.

Proposition 3.3. The metric d defined by (13) induces the weak topology on M (S).
In particular, (M (S),d) is a compact metric space.
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Proof. In a first step, we are going to show that the metric d is dominated by the
Vasserstein distance, i.e., we will verify that

d(,ua V) < dV(:usv)' (14)
To this end, let f:S — R be a continuous function which satisfies
> 214 A,(f) < oo
acA
In order to verify (14), it is enough to show that
L(f) <2 4,0).
acA

To this end, we fix x, y €S and put
J={aeA:x"#y"}.

With no loss of generality, we may assume that J = (j,, )sen- Let (x,)sen be a sequence
of configurations such that xo =x, such that lim,_,, x, = y and such that the following
holds true for all n,m & N:

i Jn b_ b . Jn o
x{zn #anrl’ Xn _xn+1 (b#]")’ xn+m+l =Yy "
Thus, we have that

S = D <D Al f)

acJ

<X (T 2 1gem

aeA beA

= ds(x, )Y 2" A,(f).

acA

Dividing both sides of this inequality by ds(x, y), we see that
L(f) < Y2440,

This yields (14), and so lim,_, . d(i,, ) =0 whenever the sequence of random fields
{ttn }nen converges to u in the weak topology.
Suppose now that lim,_,. d(i,, ) =0. In this case, we have

lim p,(f)=p(f)
n—oo
for any f € %(S). This proves our assertion. []
3.2. Macroscopic convergence:. independent transitions
Throughout this subsection, we assume that the stochastic kernel IT takes the product

form (3), i.e., we assume that the transition to a new configuration is made indepen-
dently at different sites, given the configuration x € S,.
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Let us first formulate a uniform Dobrushin—Vasserstein condition on the individual
transition probabilities in order to control the local interaction in the stochastic kernels
I,. To this end, we introduce a vector rj :(rﬁ )iea With components

rh = sup{3|Imu(x; ) — mu(ys )|l x=y off @ — i} (15)

for any random field u € .#,(S) and for every a € A. Note that =, | by transla-

— "a—i,0
tion invariance.

Assumption 3.4. The vectors 7/ introduced in (15) satisfy

oy = suerZ0<l. (16)
K a

Remark 3.5. Under our Assumption 3.4, we may as well assume that the following
“weighted” uniform Dobrushin—Vasserstein condition holds: for a small enough # > 0
we have

o= supZZ'”“erO < 1. 17)
H a

The equivalence of (16) and (17) follows from our Assumption 2.5 because the mea-
sures I1,(x;-) have a product form, and because the mapping u r";’ o 18 continuous.

Remark 3.6. A vector » =(7,),en is called an estimate for the random fields u and v

on § if
() = vOI <D rada(f) (18)
acA
for any f € %(S). For two product measures pu=]],.n ta and v=]],cn va such an
estimate is given by
”a:%”l‘a*‘)a”a (19)

cf., e.g., Simon (1993), Theorem V.2.2.

In view of (18) and (19) the product structure of the measures I1,(x;-) implies

AT, ) <Y el Al ) (20)
ieA

for any f € %(S). Under Assumption 3.4 we obtain the estimate

AT, f) < (sueré‘i,o> ZAi(f) < OCOZ Ai(f)-

For any sequence {}en it follows by induction that

Ay T, f) < S A0, 1, ) < o7 S 401 @1)

a,i

and so

lim A(MT, - 11, £)=0. (22)
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Remark 3.7. In the case where the transition kernel does not depend on p, the pre-
ceding argument summarizes the proof of Vasserstein (1969) that the Markov chain IT
converges to a unique equilibrium distribution. In our context, (22) shows that the mi-
croscopic process {X;},cn has local asymptotic loss of memory as soon as (16) holds
true. In order to ensure weak convergence of the sequence {II'(x;-)};en, however, we
need an additional contraction condition (see Assumption 25 below) which controls
the dependence of the individual transition laws on the empirical fields.

Our Dobrushin-condition (16) allows us to establish the following contraction
property of the transition kernels I1,,.

Proposition 3.8. Let v,v€ #(S) and p € My(S). Under Assumption 3.4 we have that
d(vIl,, vl ,) < od(v, V). (23)

Proof. For any u € .#,(S), let the vector ri =(r};)ica be defined as in (15). Using
(20) and (17), we obtain

Zznlaua(ﬂu.f) < Z Z2'1\a|*ﬂ\i|r57i’02ﬂ|i|Al.(f)

< { 5 2'} S 2
— Z 2;”“"”502 214, £)
< OCZ 214 f).

In particular, we have for any f € %(S) that

S il A1, /)
S DA S 24)

Since the transition probability I, has the Feller property, we get

o (L, f) — VUL )| S, 24 A,(I,. f)
dOMe ) = S S AT, ) S, 21940 /)

s DT = 5L
rews) g 2N AT, f)

% sup [v(g) — (g)|
geEL(S) Za 2'7|H\Aa(g)

= ad(v,V)

N

N

due to (24). This proves our assertion. []
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Our goal is now to show that Assumption 3.4 combined with the following contrac-
tion condition implies weak convergence of the sequence of empirical fields {R}};en
(x€S,) to a unique probability measure p* on S.

Assumption 3.9. There exists a constant § < 1 — o such that
sup d(I1(x; -), I (x5 +)) < fd(p,v) (25)

for all p,ve 4,(S).

Remark 3.10. Let us verify that our Assumption 3.9 holds true as soon as the
individual transition laws satisfy

sup %HTC;L(M ) — my(x; )” < Pd(w,v).

Indeed, since

B | [ (D)UL(x; dy) — I1,(x;dy))|
Sup (I (<), 1,5 )= sup. sup. e ,

and because the vector #*" = (r}""),ca With components
N 1 . .
re" = sup g [ mu(xs ) — m(xs )| (26)
X
is an estimate for the product measures I1,(x;-) and I1,(x;-), we obtain

Z Aa(f)”it“
supd(I1,(x; ), ITy(x;-)) < sup =4———
WP (H(ex:-) ) fef/fS) > 2M4l A ()

Bd(u,v) sup >a 4a(S)

rewis) S 2N A(f) = Bd(u,v).

Example 3.11. Let us return to the individual transition laws introduced in (7). For
any fixed u € .#,(S) we can write

Tu(Oax, {+13) = g((" e (ay. m(p)),

where m(u) := [g x°du for pe . 4,(S).
We assume that the mapping ¢ satisfies a uniform Lipschitz condition in its second
argument, i.e.,

For f(x):=x° we obtain

sup 1|7 +) — (s )| < Blm(p) — m(v)]

_ plu) —v()|
U2 ()
< Bd(p.v)

for all u,ve 4,(S). In view of the previous remark, our Assumption 3.9 is satisfied
whenever ff < 1 — a.
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We are now going to prove the main theorem of this subsection.

Theorem 3.12. If our Assumptions 2.5, 3.4 and 3.9 are satisfied, then there exists a
unique homogeneous random field v on S such that

WR() = /S RO () (1 — o0) @7

for any initial distribution u on S,. Here < denotes weak convergence of probability
measures.

Proof. Let us fix x€S,. We are going to show that the sequence of empirical fields

{R}}ien defined recursively by (12) satisfies a contraction condition with respect to
the metric d introduced in (13).

1. Due to Proposition 3.8, we know already that Assumption 3.4 implies
d(vll, VI1,) < od(v,7V) (28)

for any v, V, u € A4;(S).
2. For u,ve #,(S), we can combine our Assumption 3.9 with (28) in order to obtain

d(udl, Vi) < (o + B)d(u, v). (29)
Indeed, it follows from the definition of the metric d that

d(vI,,vII,) < supd(I1,(x;-), I, (x;-))
and, due to (28), this implies

d(pdl,,vIl,) < d(udl,, vI1,) +d(vIl,, viIl,)

< “d(,ua V) + sup d(Hu(X; ')> Hv(X; ))

< (a+B)d(pw,v) (a+p<1).

3. Let us now concentrate on the process {uR;};en. First, we fix x €S, and analyze
the case 1= J,. Since R(x) =R} and because

R, =RiIT' =Rollg - - [pe =R/ (t=0,1,2,...)

our estimate (29) yields the following contraction property for the sequence of
ergodic random fields {R}};en:

d(R;(+T7R)tC) = d(RﬁTflnRi;r_]’RLlHR'}_I)
< (0 + PR r—1-R—y)
< (o4 p)d(RY, Ry)

< 2(a+ B).
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Here, the last inequality follows from d(u,v) < ||u — v|| < 2; see Remark 3.2. In
particular, we obtain that

supd(R}, 7. R)) < 2(a+ B’
T

which shows that {R}},cn is a Cauchy sequence in the compact space .#(S). Thus,
the sequence {R}},cn converges weakly to some probability measure v, € .Z(S).
Since R} € .#,(S) and because .#,(S) is a closed subset of .Z(S), the limit v, is
a homogeneous random field. As the set .Z.(S) is dense in .#,(S) but not closed,
there is no reason to expect v, € .#,(S). It is now easily seen that, for any initial
distribution p on S, there exists a shift-invariant random field v, on S, such that
,uRtlwu (t — o0).
4. It remains to verify that vs =v;, for all x, y €S,. This, however, follows from

d(R;CH’Rzerl) = d(R)tCHR;"RtyHR?”)
< (o + B)d(R},RY)
< 2(a + By =,
This proves our assertion. [
Let us now consider the case where the asymptotic behaviour of the macroscopic

process depends on the initial configuration. To this end, we replace our Assumption
3.9 by the following weaker condition:

Assumption 3.13. For any u € .#4.(S), there exists constants #(u)€N and f <1 —«
such that

sup d (11, (x; ), 1, (x; ) < P (ps, psIT,) (30)

for all s > #(p). Here po=p and p, = pedl, . That is, we require (25) to hold true
for all random fields v which take the form v=p 01, , s > t(u).

As an example where Assumption 3.13 holds true whereas our Assumption 3.9
is violated, we consider the following variant of the voter model analyzed in
Example 2.2.

Example 3.14. We put C ={0, 1}, and assume that the individual transition probability
takes the form

n(x; +1) = ap(x?) + pm(x) + 7/ (m(x))

where o, f§,7 are positive constants, where m“(x) denotes the proportion of “1” in the
neighborhood of site @ and where f:[0,1] — R is a non-linear function. The special
case f(m)=ym was analyzed in Example 2.2. In our present situation, the evolution of
the sequence of empirical averages is almost surely described by the non-linear relation
m(Xi41)=F(m(X,)) (t=0,1,...) where

F(m) = a{mp(1) + (1 — m) p(0)} + fm + 3f (m).
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It is easily seen that our Assumption 3.9 is violated whenever the mapping ¥ has more
than one fixed point.

Consider now the following situation: p(1)=0, p(0)= %, o= é, p= %, y=3 and

f(m) := m*(1 — m?). In this case, our uniform Dobrushin-Vasserstein condition is

satisfied with oy < % and

. 1 5
Fm)= 57+ 57m+ 3m*(1 — m?).

The mapping F has three fixed points: mgy = 0.07025, m; =~ 0.62885, m; ~ 0.75935.
Thus, our Assumption 3.9 does not hold. However, Assumption 3.13 is still satisfied.
Indeed, an easy calculation shows that there exists a critical value

A1
me = F (m)#m

such that the asymptotic behaviour of the sequence {m(X;)},cn depends in the follow-
ing manner on the initial configuration:

mo if m(x) €[0,m;) U (me, 1]
Ilim m(X,)=4q my if m(x)€{m,m.} P.-a.s.
m, otherwise
Since f/(mg) < 1 and |f"(my)| < %, we see that
|f(m(Xe1)) — f(m(Xe)| < Blm(Xev1) — m(Xp)| Pr-as.

where ff < % for all ¢ sufficiently large. We can now proceed as in Example 3.11 in
order to obtain

sup d(Igs (s ), Hryimy (v3 ) < PA(R}, RiII gy ),
y

where oy + f < 1 for all 7€ N large enough.
Let us now establish a generalization of Theorem 3.12.

Theorem 3.15. Suppose that Assumptions 2.5, 3.4 and 3.13 are satisfied. In this case,
the following holds true:

(1) For any x €S,, there exists a random field v, such that R;‘lwx as t — oo.

(i1) For any initial configuration u concentrated on S,, we have

[ BOuan = [nouan @ o)
Proof. Let us fix x € S,. Without loss of generality we may assume that #(R(x))=1.
Using the same arguments as in the proof of Theorem 3.12 we get

d(Ri, 1, RY) < 2(a+ B
In particular, for any ¢ > 0, there exists #) € N such that

supd(RS, 7, RY) <2 (a+ ) <
T

R0
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for all ¢ > ty. Thus, {R}},cn is again a Cauchy sequence with respect to the metric d,
and so there exists a homogeneous probability measure v, on S such that RY % v, as
t — oo. This yields our assertion. [

3.3. Macroscopic convergence: interactive transitions

Let us now return to the general setting of Section 2.2 and assume that the stochastic
kernels II, are determined by suitable families of local specifications (y**).cs.

Suppose that we have translation invariant estimates 7} for the random fields IT,(x; )
and IT,(y;-) on S where x =y off a.

Remark 3.16. Under suitable conditions on the specifications y*# there exists a
constant A > 1 such the vector r; with components

A ,
r(iizisup{ﬂy,’f’“(-;v)— wWECs )| x=p off a,veES, be A}

defines a translation invariant estimate for the random fields II,(x;-) and II,(y;-) on
S where x =y off a; see Theorem V.2.2 in Simon (1993) or Theorem 8.20 in Georgii
(1989) for details.

We assume that the estimates 7} satisfy (17). Note, however, that in our present
situation (16) and (17) are no longer equivalent: due to the interactive structure in the
transition kernel 11, the function I1, f does not belong to the class of local functions,
even if f € Z(S).

We also assume that one of our Assumptions 3.9 or 3.13 is satisfied.

Remark 3.17. Under suitable conditions on the specifications y“* there exists a
constant 4 > 1 such the vector *" with components

) A‘ X, X,V
”g"ZESUPHVOJM(‘;U)_VO’ G50l (31)
vx

defines a translation invariant estimates for the random fields I1,(x;-) and II,(x;-)
on S. Suppose now that

%SBXP||V3’”('§U) =70 ¢l < gd(u,V)-
In this case, we obtain
sup d(Iy(x; ), (x5 +)) < pd(p, v),
and so our Assumption 3.9 holds; cf. Remark 3.10.

An inspection of the proofs of Proposition 3.8 and Theorems 3.12 and 3.15 shows
that all our arguments remain valid if the estimates 7} satisfy (17) and if the depen-
dence of the transition kernel I, on the parameter y satisfies the contraction condition
specified in our Assumptions 3.9 and 3.13, respectively.
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3.4. Microscopic convergence

In this subsection, we are going to prove that convergence on the macroscopic level
of empirical fields implies local convergence on the microscopic level. Under suitable
contraction and continuity assumptions we show that the microscopic and macroscopic
limit coincide. Thus, we have at the same time macroscopic and microscopic conver-
gence to the same random field ¢ on S.

Throughout this section, we assume that the sequence {R}},cn (x €S,) converges in
the weak topology to some random field v, on S. Recall that this convergence holds
under Assumption 3.13 and under our Dobrushin condition (17). Moreover we assume
that the behaviour of an individual agent depends continuously on the measure p.

Assumption 3.18. Suppose that the measure I1,(x;-) is a Gibbs measure with respect
to a local specification y*#. There exists a constant f* such that

sup 3175 (5 0) = 95" (5 0)|| < Brd(p, ). (32)
X,U

Remark 3.19. In the case where the measures II,(x;-) take the product form (3), the
above assumption reduces to

up 3 (x5 ) = (s )| < B v). (33)

Using a perturbation of the Dobrushin—Vasserstein contraction technique, we are now
going to show that macroscopic convergence implies microscopic convergence.

Theorem 3.20. Suppose that we have translation invariant estimates rl for the ran-

dom fields 11,(x;-) and I1,(y;-) where x =y off a and that our Assumptions 3.4 and

3.18 are satisfied. Let u be an initial distribution which is concentrated on the set S,

and assume that the sequence of random fields {R}}icn converges for p-a.e. x €S, in

the weak topology to some random field v.. Then the following holds true:

(i) The microscopic process {X,}en converges in law to a probability measure V.
The random field v, is the unique equilibrium of the Feller kernel II,,, where
Vi := [ vepu(dx). That is

V=V, (34)

(i) The macroscopic and the microscopic limit coincide, i.e., v,=v,. Thus, any
limiting distribution is characterized by the fixed point property

Ve =vull,,. (35)

Proof. Our proof extends an argument given in Féllmer (1979a) for the case of product
kernels. For any initial distribution u, we denote by [, the expectation with respect
to the law P,. We shall first consider the case y =4, and prove that our microscopic
process converges in distribution to the unique equilibrium of the Feller kernel II,, .
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1. Let us fix x€S,, a finite set 4 C A and some B C C4. We are going to show that
lim E; [IT'15 — IT, 15]=0. (36)
t—oo *

Here, v, := v;,. In Step 3 below, we use (36) and Vasserstein’s convergence theorem
in order to establish our assertion.
For t,T € N we can write

Es 11" (B) = Es, [IT}, 15(X7)] + Ry 1,

where we put

Rt,T = [Eét[(HR’} o .HRXTH—I - H{Y)IB(XT)]
In step 2 we show that limr_,o |[R, 7| =0 uniformly in € N.
2. Note that
t
|R"T| = Z [E(SX [HR;‘ o HR'YT+k72(HRXT+k71H€’:k - H"xHi:k)lB(XT)]
k=1

t
<35, [sgp [ )<H@."13><y>] .
k=1 7

Since the stochastic kernel 11, has the Feller property we can introduce continuous
mappings gx: S — R (k€ N) by

gi(z) == I, " 15(2)

and so

t
R, 7| < Zsup
k=1 7

For any k € N, let us define a vector r by analogy with (31). In view of Remark
3.17 our continuity assumption (32) yields

/ o) (T (yidz) — T,y dz)}‘ .

Ry vy

/gk(z){HR>‘T+,[71(y§ dz) — 11, (y; dZ)}’

<ABTY ARy 41, v) Ailgn).

sup
3

This implies

Rz <iB°) [Z A )d (R, Vs )]
k i
< A" | supd RX, X Ai .
B (151; (R} v)); (9x)

Since the uniform Dobrushin—Vasserstein condition (16) is satisfied it follows from
(21) that

t
1
Aige) < A ot <4 :
; (9) ||k§::lo M=
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Thus, uniformly in # € N, we have

412~ (

lim |R
Am [Rer| < T

lim supd(R7, vx)> =0 37)

T—oo>T

as the sequence of empirical fields {R}},cn converges to v, in the weak topology.
This shows (36).

. We shall now apply Vasserstein’s convergence theorem in order to establish (i).
Due to (37), we have that

lim |Es 11715 — 1T, 14]|

t,T— o0

= lim |Es IT, 15(X7) + Rir — Es, 1T, 15(X7)| =0.

Due to (17), Vasserstein’s theorem yields the existence of a unique random field v,
on S such that IT; (y; I)59.(-) as t — 0o (y €S). This shows (i) for u=J, since

lim IT'(x; B) = Jim "7 (x;B)= Jim I (x; B) = 7(B).
1—00 t,T— 00 t,T— 00 x

. Let u be an initial distribution which is concentrated on the set S,. From our
preceding arguments it is easily seen that

w -

P =,

where vV, is the unique invariant measure of the kernel II,,.

. Let us now verify the fixed-point property (35) and show that the limiting distribu-
tion both on the macroscopic and on the microscopic level coincide. Due to (17),
the Feller kernel I1,, admits a unique equilibrium, and so it is enough to show that

vu=v,II,,. To this end it suffices to fix x €S, and to consider the case y=d;. In

view of Remark 3.17 our Assumption 3.18 yields
sup d(1,(x; ), I, (x5 +)) < 2B"d(p, v)

for some constant A > 1. Thus, it follows from Proposition 3.8 and from the recur-
sive definition of the sequence {R};cn in (12) that

d(veIl,, vx)
< d(vedly, villgy) + d(viIlpe, Ri e ) + d(R; s, vy)
Supd(Hv\(y, ) Hpe(y3+)) + d(ve, RY) + d(Rfy 1, vx)
< AP d(vi, RY) + d(ve, R) + d(R) |, Vx).
Since we assume that tlirgo d(R},vy)=0, this yields

Ve =V 11, .
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Hence, it follows from (i) that v, =v,, i.e., the limiting distribution on the micro-
scopic and on the macroscopic level coincide.
This proves our assertion. []

Note that we have the following variant of Theorem 3.20.

Corollary 3.21. Let (M,dy) be a metric space and @ : My(S) — M be a measurable
mapping. Suppose we have a system of conditional probabilities y*~™ which deter-
mines a unique random field I1,(x;-) on S for any m € M. In this case, each y*®®Rx)
determines a unique measure I1(x;-)= gy (x;-). We assume that the local spec-
ifications y*" are spatially homogeneous and that the dependence of the individual
behaviour of agent a € A on the macroscopic signal ®(R(x)) is continuous. It fol-
lows from the proof of Theorem 3.20 that convergence of the sequence {P(R(X;)}sen
to some ®* implies weak convergence of the Markov chain {X;}ien with transition
kernel II to the unique stationary measure u* of the Feller kernel Ig~.

Example 3.22. Let us return to the dynamical model (6). Since the macroscopic
process {m(X;)},en converges almost surely to m* = p(0)/(1 + p(0) — p(1)), the
microscopic process {X;},cn converges in law to the unique equilibrium p* of
the Feller kernel

Hm*(X; ) = H Tcm*({xb}bEN(a); ')7

acA

where

T (X Y pen(ars 1) = ap(x®) + fma(x) + ym*.
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