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Abstract

We study the long run behaviour of interactive Markov chains on in1nite product spaces. In
view of microstructure models of 1nancial markets, the interaction has both a local and a global
component. The convergence of such Markov chains is analyzed on the microscopic level and
on the macroscopic level of empirical 1elds. We give su5cient conditions for convergence on
the macroscopic level. Using a perturbation of the Dobrushin–Vasserstein contraction technique
we show that macroscopic convergence implies weak convergence of the underlying Markov
chain. This extends the basic convergence theorem of Vasserstein for locally interacting Markov
chains to the case where an additional global component appears in the interaction. c© 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider interactive Markov chains on a product space S =CA where C is some
1nite state space and A is an in1nite set of sites or agents. Thus, the state space of
the Markov chain is the set of con1gurations x= (xa)a∈A which specify an individual
state for each agent a∈A. Suppose that the transition kernel is of the form

�(x; ·) =
∏
a∈A

�a(x; ·): (1)

In such a situation, the behaviour of the agents is interactive insofar as the probability
�a(x; c) that agent a∈A switches to the state c∈C does not only depend on his own
present state but may involve the states of other agents.

The convergence behaviour of Markov chains of the form (1) has been investigated
in depth in the case where the interaction is purely local. This means that �a(x; ·) only
depends on the states in some neighborhood N (a). In this case � may be viewed as
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a Feller kernel on the compact state space S. Using Dobrushin’s contraction technique
and the Feller property, Vasserstein (1969) has shown that the Markov chain converges
weakly to some unique equilibrium distribution 
 if the interaction is not too strong.

In recent years there is an increasing interest in dynamical microstructure models
of 1nancial markets which involve interacting preferences and expectations of a large
number of agents; see, e.g., Brock and Hommes (1997). In such a context, it becomes
natural to introduce a global component into the interaction, i.e., to introduce some
dependence on the average behaviour of the con1guration x∈ S into the transition laws
�a. In F'ollmer (1994) and Horst (2000) such Markov chains are used as a random
environment for the evolution of stock prices, viewed as a sequence of temporary price
equilibria. In order to analyze the asymptotic behaviour of such price processes, we
need convergence results for the underlying Markov chain. This is the motivation for
the present paper.

Our goal is to clarify some of the mathematical problems which arise in the pres-
ence of both a local and a global component in the interaction. We consider the case
A=Zd where the average behaviour of a con1guration x∈ S is described by the em-
pirical distribution %(x) or, more completely by the empirical 1eld R(x). Due to the
global dependence of the interaction the Feller property of � will typically be lost.
In order to prove convergence of the Markov chain {Xt}t∈N governed by the kernel
�, we proceed in two steps. Due to a spatial law of large numbers for empirical
1elds, the macroscopic process {R(Xt)}t∈N can be analyzed separately. Using contrac-
tion arguments with respect to a suitable metric, we obtain the convergence of the
macroscopic process to some random 1eld; this part is based on Horst (2000) and 1lls
a gap in F'ollmer (1979a). Our main result in Theorem 3.20 is based on a perturbation
of the Dobrushin–Vasserstein contraction technique. We show that macroscopic con-
vergence implies weak convergence of the underlying microscopic process {Xt}t∈N to
the same limiting random 1eld. This may be viewed as an extension of Vasserstein’s
convergence theorem to the case where the interaction has both a local and a global
component.

In the dynamical model (1) the individual transition laws �a have an interactive
structure, but the transition to a new con1guration is made independently by the dif-
ferent agents. An interactive structure in the transition itself is captured by a model
where the measure �(x; ·) is not a product measure but a Gibbs measure with respect
to a system of conditional probabilities �x depending on the con1guration x. Based on
Horst (2000) and Horst (2001) we show how our convergence results can be extended
to this general setting.

2. Locally and globally interacting Markov chains

Let C be some 1nite state space. We denote by A the d-dimensional integer lattice
Zd and by S := CA the compact space of all con1gurations x= (xa)a∈A with xa ∈C.
A probability measure 
 on S will be called a random 6eld. The space M(S) of
all such random 1elds is compact with respect to the topology of weak convergence.
Since the state space C is 1nite, the class L(S) of all local functions which depend
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only on 1nitely many coordinates is dense in C(S) with respect to the topology of
uniform convergence. Thus, a sequence {
t}t∈N of random 1elds converges weakly to

∈M(S) iI


t(f) :=
∫
S
f d
t

t→∞→ 
(f) (f∈L(S)): (2)

Our aim is to analyze some aspects of the long run behaviour of interactive Markov
chains on S with transition kernel �(x; dy). Let us 1rst assume that the kernel � takes
the product form

�(x; ·) =
∏
a∈A

�a(x; ·): (3)

In such a model, the state of a single agent a∈A changes in reaction to the situation
x∈ S according to the probability distribution �a(x; ·) on C. The individual transition
probabilities �a(x; ·) have an interactive structure since they depend not only on the
individual state xa. Note, however, that the transition to a new con1guration is made
independently at diIerent sites. In (10) below, we will admit an interactive structure in
the transition itself. Such a situation is captured by a model where the measure �(x; ·)
is not a product measure, but a Gibbs measure with respect to a system of conditional
probabilities depending on the con1guration x.

The convergence of interactive Markov chains of the form (3) has been investigated
in depth in the case where the interaction is purely local, i.e., under the assumption that
the individual transition law �a(x; ·) only depends on the local situation (xb)b∈N (a) in
some 1nite “neighborhood” N (a); see, e.g., F'ollmer (1979b), Lebowitz et al. (1990) or
Vasserstein (1969). In such a situation, the stochastic kernel � has the Feller property,
i.e.,

�f(·) :=
∫
S
f(x)�(· ; dx)∈C(S)

whenever f∈C(S). This property is crucial for the basic convergence theorem in
Vasserstein (1969): under suitable contraction bounds on the interaction between
diIerent sites Vasserstein (1969) establishes weak convergence of the Markov chain
to some unique equilibrium distribution � in the sense that

lim
t→∞
�t(f) = �(f)

for all f∈C(S) and any initial distribution 
∈M(S). Due to (2), weak convergence
of the sequence {
�t}t∈N may be viewed as a notion of local convergence.

The purpose of the present paper is to introduce a macroscopic component both
into the interaction and into the notion of convergence. This means that for a given
con1guration x= (xa)a∈A ∈ S, the inMuence of x at site a∈A is not only felt through
the local situation (xb)b∈N (a) in some neighborhood N (a) of a but also through some
global aspects of x. In the presence of a global component in the interaction, the Feller
property of the transition kernel � will typically be lost, and so we cannot apply the
method of Vasserstein (1969) in order to study the asymptotic behaviour of the Markov
chain on S.

In the following simple example where the transition behaviour at site a∈A depends
both on the individual state xa and on an empirical average m(x) associated with x,
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this problem is easily solved because we can study separately the convergence on the
macroscopic and on the microscopic level.

Example 2.1. Let C = {0; 1} and denote by S1 the set of all con1gurations such that
the empirical average associated with the con1guration x∈ S1 exists along a suitable
sequence of 1nite sets An ↑ A:

S1 :=

{
x∈ S: ∃m(x) := lim

n→∞
1

|An|
∑
a∈A n

xa
}
:

For x∈ S1 we assume that

�a(x; ·) = �(xa; m(x); ·) (4)

where � is a transition probability from C × [0; 1] to C, and

�(x; ·) =
∏
a∈A

�(xa; m(x); ·) (5)

for any x∈ S1. It follows from the strong law of large numbers that

lim
n→∞

1
|An|

∑
a∈A n

ya = lim
n→∞

1
|An|

∑
a∈A n

�(xa; m(x); 1) �(x; ·)-a:s:

The product-measure �(x; ·) given by (5) is therefore concentrated on the set S1, and
the empirical average satis1es

m(y) =F(m(x)) := m(x)�(1; m(x); 1) + (1 − m(x))�(0; m(x); 1)

for �(x; ·)-a.e. y∈ S1. Thus, the Markov chain {Xt}t∈N with transition probability �
on S1 induces almost surely a deterministic sequence of empirical averages {m(Xt)}t∈N.
The dynamics of this “macroscopic process” is speci1ed by the iteration of the function
F acting on the interval [0; 1]. For any starting point x∈ S1, the process {Xt}t∈N
may therefore be viewed as a Markov chain evolving in the time inhomogeneous but
deterministic environment {mt}t∈N de1ned recursively by

m0 =m(x) and mt := F(mt−1) (t¿ 1):

Suppose now that the macroscopic process converges to some m∗ ∈ [0; 1]. In this case,
it is easily seen that we obtain weak convergence of the Markov chain {Xt}t∈N to the
unique equilibrium 
∗ of the Feller kernel

�m∗(x; dy) :=
∏
a∈A

�(xa; m∗; dya):

This convergence result is a special case of Theorem 3.20 below. The preceding argu-
ment illustrates the method of separating the analysis of macroscopic and microscopic
convergence.

Let us now consider the case where the individual behaviour is inMuenced both by
an empirical average and by the situation in some neighborhood. We 1x l¿ 0 and
de1ne the neighborhood of an agent a∈A as

N (a) := {b∈A: |b− a|6 l}:
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If the transition probability �a(x; ·) depends both on some average of x and on the val-
ues xb (b∈N (a)) then the analysis of the convergence behaviour of the Markov chain
becomes more involved. Only in very special cases such as the following example, we
can still obtain a simple macroscopic equation for the deterministic evolution of the
sequence of empirical averages {m(Xt)}t∈N.

Example 2.2 (F'ollmer; 1994). As an illustration of the interplay between the long run
behaviour on the level of con1gurations and the asymptotics of the sequence of em-
pirical averages {m(Xt)}t∈N, we 1x constants �; �; �¿ 0, and consider the following
simple voter model with C = {0; 1}: For x∈ S1, the individual transition law �a(x; ·) is
described as the convex combination

�a(x; 1) = �p(xa) + �ma(x) + �m(x); (6)

where � + � + �= 1. Here, ma(x) is the proportion of ‘1’ in the neighborhood N (a).
It is easy to see that the sequence of empirical averages satis1es almost surely the
deterministic dynamics

m(Xt+1) = �{m(Xt)p(1) + (1 − m(Xt))p(0)} + (1 − �)m(Xt):

Thus, the macroscopic process {m(Xt)}t∈N converges almost surely to

m∗ :=
p(0)

1 + p(0) − p(1)
:

It follows from Theorem 3.20 below that the microscopic process {Xt}t∈N converges
in law to the unique equilibrium of the Feller kernel

�m∗(x; ·) :=
∏
a∈A

�a(x; m∗; ·)

where the probability distribution �a(x; m∗; ·) on C takes the form

�a(x; m∗; 1) = �p(xa) + �ma(x) + �m∗:

Thus, the long run behaviour of the microscopic process {Xt}t∈N is determined by the
unique limit of the macroscopic process {m(Xt)}t∈N.

The next example shows that we will typically not obtain a simple equation which
describes the dynamics of the sequence of empirical averages {m(Xt)}t∈N.

Example 2.3. Consider the following generalization of the voter model (6). For x∈ S1,
the individual transition probabilities can be described by a measurable mapping
g : C|N (a)| × [0; 1] → [0; 1] in the sense that

�a(x; 1) = g({xb}b∈N (a); m(x)): (7)

Typically, we cannot expect that there exist a function F : [0; 1] → [0; 1] such that
m(Xt+1) =F(m(Xt)). Nevertheless, we will show that the macroscopic process
{m(Xt)}t∈N converges almost surely if the mapping g satis1es a suitable contraction
condition in its second argument; see Example 3.11 below. Due to Theorem 3.20 below,
this will imply weak convergence of the microscopic process {Xt}t∈N.
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We are now going to specify the mathematical framework which allows us to analyze
the long run behaviour of the Markov chain {Xt}t∈N both on the macroscopic and on
the microscopic level. To this end, we introduce the family of shift-transformations
 a (a∈A) on S de1ned by ( ax)(b) = xa+b.

De nition 2.4. (i) A probability measure 
∈M(S) is called homogeneous, if 
 is
invariant under the shift maps  a. By

Mh(S) := {
∈M(S): 
= 
 ◦  a for all a∈A}
we denote the class of all homogeneous random 1elds 
 on S.

(ii) A homogeneous probability measure 
∈Mh(S) is called ergodic, if 
 satis1es a
0-1-law on the "-1eld of all shift invariant events. The class of all ergodic probability
measures 
 on S is denoted by Me(S).

For a given n∈N we put

An := [ − n; n]d ∩A
and denote by Se the set of all con1guration x∈ S such that the empirical 6eld R(x),
de1ned as the weak limit

R(x) := lim
n→∞

1
|An|

∑
a∈A n

$ ax(·); (8)

exists and belongs to Me(S). The empirical 1eld R(x) carries all macroscopic informa-
tion about the con1guration x= (xa)a∈A ∈ Se. In particular, the empirical distribution

%(x) = lim
n→∞

1
|An|

∑
a∈A n

$xa(·)

is given as the one-dimensional marginal distribution of R(x).
Consider the product kernel � de1ned by the transition laws �a in (7). Proposition

3.1 below shows that the measure �(x; ·) (x∈ Se) is concentrated on the set Se and
that the empirical average satis1es

m(y) = lim
n→∞

1
|An|

∑
a∈A n

ya

= lim
n→∞

1
|An|

∑
a∈A n

�( ax; m(x); 1)

=
∫

�(z; m(x); 1)R(x)(dz)

:=G(R(x))

for �(x; ·)-a.e. y∈ Se. Thus, we have to consider the full dynamics of the sequence of
empirical 1elds {R(Xt)}t∈N even if, as in Example 2.3, the behaviour of agent a∈A
depends on R(x) only on the empirical average m(x). Our aim is to formulate condi-
tions on the individual transition laws which guarantee convergence of the sequence of
empirical 1elds {R(Xt)}t∈N and to analyze the interplay between convergence of the
Markov chain {Xt}t∈N on the macroscopic level and on the microscopic level.
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2.1. Macroscopic interaction: independent transitions

Let us now be more speci1c about the structure of the individual transition probabili-
ties �a. We assume that the interaction is spatially homogeneous and that the interactive
inMuence of the present con1guration x at site a is felt both through the local situa-
tion in the neighborhood N (a) of a and through the average situation throughout the
whole system. This average situation is described by the empirical distribution %(x) or,
more completely, by the empirical 1eld R(x) associated with x∈ Se. Thus, we consider
individual transition laws which take the form

�a(x; ·) = �R(x)( ax; ·)
where �
(x; ·) is a stochastic kernel from S ×Mh(S) to C.

Assumption 2.5. The probability laws {�
(x; ·)}x∈S satisfy a spatial Markov property
of order l in their dependence on the present con1guration:

�
( ax; ·) = �
( ay; ·) if  ax=  ay on N (a):

Moreover, we assume that the mapping 
 
→ �
(x; ·) is continuous.

Let us now 1x a homogeneous random 1eld 
∈Mh(S) and a con1guration x∈ S.
It follows from our Assumption 2.5 that

�
(x; ·) :=
∏
a∈A

�
( ax; ·) (9)

de1nes a Feller kernel on the con1guration space S. In particular,

�(x; ·) := �R(x)(x; ·) =
∏
a∈A

�R(x)( ax; ·)

de1nes a stochastic kernel from Se to S. In fact, we will see in Proposition 3.1 below
that � may be viewed as a stochastic kernel on the con1guration space Se. In contrast
to the stochastic kernels �
, the kernel � typically does not have the Feller property,
due to the macroscopic dependence on the present con1guration x via the empirical
1eld R(x).

2.2. Macroscopic interaction: interactive transitions

Let us now extend the previous setting by introducing an interactive structure into
the transition itself. This idea is captured by a model where �(x; ·) is not a product
measure, but a Gibbs measure with respect to a system of conditional probabilities �x

depending on the con1guration x; see, e.g., Georgii (1989).
In order to make this more precise, we 1x for any con1guration x∈ S and for every

homogeneous random 1eld 
 on S, a local speci6cation �x;
 = (�x;
a )a∈A; here �x;
a is
a stochastic kernel from CA−{a} to C which speci1es the transition behaviour of agent
a∈A, given a boundary condition v on A − {a}, i.e., the new states of the other
agents.
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We assume that the mapping 
 
→ �x;
0 (· ; v) is continuous, and that �x;
 satis1es a
Markov property of order l both in its dependence on the boundary condition and on
the present con1guration: For any 1xed x∈ S, we have

�x;
a (· ; v) = �x;
a (· ;w) if v=w on N (a) − {a}
and for each 1xed boundary condition v on A− {a}, we have

�x;
a (· ; v) = �y;
a (· ; v) if x=y on N (a):

If the transition to a new con1guration is made independently by diIerent agents, given
the con1guration x, the preceding conditions reduce to our Assumption 2.5. We also
assume that the interaction is spatially homogeneous:

� ax;
a (· ;  av) = �x;
0 (· ; v) ◦  a (a∈A):

Due to Dobrushin’s fundamental uniqueness theorem, the speci1cation �x;
 deter-
mines a unique random 1eld �
(x; ·) if we impose a suitable contraction condition on
the speci1cation; see, e.g., Georgii (1989), Theorem 8:7. Thus, the family of conditional
probabilities (�x;R(x))x∈Se de1nes a stochastic kernel

�(x; ·) := �R(x)(x; ·) (10)

from Se to S; the product structure (3) is included as a special case. In fact, we will
see that � may be viewed as a stochastic kernel on the con1guration space Se.

3. Convergence theorems

We are now ready to study the dynamics of the interactive Markov chain {Xt}t∈N
on the state space Se de1ned by the general transition kernel

�(x; ·) =�R(x)(x; ·)
introduced in (10). In a 1rst step, we use the following spatial law of large numbers for
the random 1elds �
(x; ·) in order to view � as a transition kernel on the con1guration
space Se. For the proof we refer to Horst (2000) or to Horst (2001); in the special
product case (3) the argument is much simpler and can be found in F'ollmer (1979a).

Proposition 3.1. For all x∈ Se and 
∈Mh(S); the measure �
(x; ·) is concentrated
on the set Se. For �
(x; ·)-a.e. y∈ Se; the empirical 6eld R(y) takes the form

R(y)(·) =
∫
S
�
(z; ·)R(x)(dz):

Let x∈ Se. The preceding proposition shows that

R(y)(·) =
∫
Se
�R(z)(z; ·)R(x)(dz) =

∫
S
�R(x)(z; ·)R(x)(dz) (11)

for �(x; ·)-a.e. y∈ Se. In particular, we have

�(x; Se) = 1
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for any x∈ Se, and so we will use Se as the state space of the Markov chain {Xt}t∈N
with transition kernel �. We denote by Px the distribution of the chain {Xt}t∈N with
initial state x∈ Se. Since a con1guration x∈ Se induces an ergodic empirical 1eld R(x),
the microscopic process {Xt}t∈N induces Px-a.s. the macroscopic process {R(Xt)}t∈N
with state space Me(S).

Let us now show that the spatial law of large numbers for ergodic empirical 1elds
allows us to analyze the microscopic and the macroscopic process separately. In view
of (11) the macroscopic process satis1es

R(Xt+1) =R(Xt)�R(Xt) Px-a:s:

i.e., the random 1eld R(Xt+1) is Px-a.s. determined by the empirical 1eld R(Xt). In
other words, we have

R(Xt) =Rx
t Px-a:s:;

where we de1ne the sequence of ergodic random 1elds {Rx
t }t∈N by

Rx
0 =R(x) and Rx

t+1 := Rx
t �Rx

t
=Rx

0�Rx
0
· · ·�Rx

t
(t ∈N): (12)

In this sense, for any initial state x∈ Se, the microscopic process may be viewed as a
Markov chain evolving in a time inhomogeneous but deterministic environment {Rx

t }t∈N
which is generated by the macroscopic process. In particular, the law of the random
variable Xt+1 takes the form

�t+1(x; ·) = (�Rx
0
· · ·�Rx

t
)(x; ·):

Our aim is now to study the asymptotics of the Markov chain {Xt}t∈N both on the
microscopic level and on the macroscopic level of empirical 1elds. Suppose that the
microscopic process converges in law to some equilibrium �x in the sense that∫

S
f d($x�t) t→∞→

∫
S
f d�x (f∈C(S)):

In this case, the sequence of empirical 1elds {Rx
t }t∈N = {R(x)�t}t∈N converges weakly

to the measure

R�x(·) :=
∫
S
�z(·)R(x)(dz):

Thus, Proposition 3.1 implies that we have at the same time convergence of macro-
scopic quantities of the form∫

f(z)R(Xt)(dz) = limn→∞
1

|An|
∑
a∈A n

f( aXt) (f∈C(S))

along Px-almost all paths of the microscopic process to
∫
f(z) R�x(dz): In this sense,

microscopic convergence implies macroscopic convergence. Sections 3.2, 3.3 and 3.4
may be viewed as a converse construction: Sections 3.2 and 3.3 provide a direct proof
of macroscopic convergence. We will formulate conditions which guarantee that the
macroscopic process {R(Xt)}t∈N satis1es almost surely the contraction condition

d(R(Xt+1); R(Xt))6 �d(R(Xt); R(Xt−1)) (�¡ 1)
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with respect to a suitable metric d on M(S), and this yields weak convergence of the
sequence {R(Xt)}t∈N. The metric d will be introduced in the Section 3.1. In Section
3.4, we will show that macroscopic convergence implies microscopic convergence.

3.1. A metric for random 6elds

Let us denote by *a(f) the oscillation of a function f on S at site a∈A, i.e.,

*a(f) := sup{|f(x) − f(y)|: x=y oI a}
and by

*(f) := sup{|f(x) − f(y)|: x; y∈ S}
the oscillation of f on S. For any f∈C(S) we have

*(f)6
∑
a∈A

*a(f):

We introduce a metric d on the class M(S) of all random 1eld on S by

d(
; �) := sup
f∈C(S)

|
(f) − �(f)|∑
a 2+|a|*a(f)

(
; �∈M(S)) (13)

where + denotes a positive constant which will be speci1ed later.

Remark 3.2. We have

d(
; �)6 sup
f∈C(S)

|
(f) − �(f)|∑
a *a(f)

6 sup
f∈C(S)

|
(f) − �(f)|
*(f)

6 ‖
 − �‖;

where ‖
− �‖ denotes the total variation of the signed measure 
− � on S. The proof
of the following proposition shows that

d(
; �)6dV (
; �):

Here, dV denotes the Vasserstein distance on M(S), i.e.,

dV (
; �) := sup
{ |
(f) − �(f)|

L(f)
: f∈C(S)

}

and

L(f) := sup
x 	=y

{ |f(x) − f(y)|
dS(x; y)

}

is the Lipschitz coe5cient of the function f with respect to the metric

dS(x; y) :=
∑
a∈A

2−+|a|1{xa 	=ya}

on the con1guration space S.

Proposition 3.3. The metric d de6ned by (13) induces the weak topology on M(S).
In particular; (M(S); d) is a compact metric space.
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Proof. In a 1rst step, we are going to show that the metric d is dominated by the
Vasserstein distance, i.e., we will verify that

d(
; �)6dV (
; �): (14)

To this end, let f : S → R be a continuous function which satis1es∑
a∈A

2+|a|*a(f)¡∞:

In order to verify (14), it is enough to show that

L(f)6
∑
a∈A

2+|a|*a(f):

To this end, we 1x x; y∈ S and put

J := {a∈A : xa �=ya}:
With no loss of generality, we may assume that J = (jn)n∈N. Let (xn)n∈N be a sequence
of con1gurations such that x0 = x, such that limn→∞ xn =y and such that the following
holds true for all n; m∈N:

x jn
n �= x jn

n+1; xbn = xbn+1 (b �= jn); x jn
n+m+1 =yjn :

Thus, we have that

|f(x) − f(y)|6
∑
a∈J

*a(f)

6
∑
a∈A

(∑
b∈A

2+|b|*b(f)

)
2−+|a|1{xa 	=ya}

= dS(x; y)
∑
a∈A

2+|a|*a(f):

Dividing both sides of this inequality by dS(x; y), we see that

L(f)6
∑
a

2+|a|*a(f):

This yields (14), and so limn→∞ d(
n; 
) = 0 whenever the sequence of random 1elds
{
n}n∈N converges to 
 in the weak topology.

Suppose now that limn→∞ d(
n; 
) = 0. In this case, we have

lim
n→∞
n(f) = 
(f)

for any f∈C(S). This proves our assertion.

3.2. Macroscopic convergence: independent transitions

Throughout this subsection, we assume that the stochastic kernel � takes the product
form (3), i.e., we assume that the transition to a new con1guration is made indepen-
dently at diIerent sites, given the con1guration x∈ Se.
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Let us 1rst formulate a uniform Dobrushin–Vasserstein condition on the individual
transition probabilities in order to control the local interaction in the stochastic kernels
�
. To this end, we introduce a vector r
a = (r
a; i)i∈A with components

r
a; i := sup{ 1
2‖�
(x; ·) − �
(y; ·)‖: x=y oI a− i} (15)

for any random 1eld 
∈Mh(S) and for every a∈A. Note that r
a; i = r
a−i;0 by transla-
tion invariance.

Assumption 3.4. The vectors r
a introduced in (15) satisfy

�0 := sup



∑
a

r
a;0 ¡ 1: (16)

Remark 3.5. Under our Assumption 3:4, we may as well assume that the following
“weighted” uniform Dobrushin–Vasserstein condition holds: for a small enough +¿ 0
we have

� := sup



∑
a

2+|a|r
a;0 ¡ 1: (17)

The equivalence of (16) and (17) follows from our Assumption 2:5 because the mea-
sures �
(x; ·) have a product form, and because the mapping 
 
→ r
a;0 is continuous.

Remark 3.6. A vector r = (ra)a∈A is called an estimate for the random 1elds 
 and �
on S if

|
(f) − �(f)|6
∑
a∈A

ra*a(f) (18)

for any f∈C(S). For two product measures 
=
∏

a∈A 
a and �=
∏

a∈A �a such an
estimate is given by

ra = 1
2‖
a − �a‖; (19)

cf., e.g., Simon (1993), Theorem V:2:2.

In view of (18) and (19) the product structure of the measures �
(x; ·) implies

*a(�
f)6
∑
i∈A

r
a; i*i(f) (20)

for any f∈C(S). Under Assumption 3:4 we obtain the estimate

*(�
f)6

(
sup
i

∑
a

r
a−i;0

)∑
i

*i(f)6 �0

∑
i

*i(f):

For any sequence {
t}t∈N it follows by induction that

*(�
0 · · ·�
tf)6
∑
a; i

r
1
a; i*i(�
1 · · ·�
tf)6 �t+1

0

∑
i

*i(f) (21)

and so

lim
t→∞*(�
0 · · ·�
tf) = 0: (22)
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Remark 3.7. In the case where the transition kernel does not depend on 
, the pre-
ceding argument summarizes the proof of Vasserstein (1969) that the Markov chain �
converges to a unique equilibrium distribution. In our context, (22) shows that the mi-
croscopic process {Xt}t∈N has local asymptotic loss of memory as soon as (16) holds
true. In order to ensure weak convergence of the sequence {�t(x; ·)}t∈N, however, we
need an additional contraction condition (see Assumption 25 below) which controls
the dependence of the individual transition laws on the empirical 1elds.

Our Dobrushin-condition (16) allows us to establish the following contraction
property of the transition kernels �
.

Proposition 3.8. Let �; �̃∈M(S) and 
∈Mh(S). Under Assumption 3:4 we have that

d(��
; �̃�
)6 �d(�; �̃): (23)

Proof. For any 
∈Mh(S), let the vector r
a = (r
a; i)i∈A be de1ned as in (15). Using
(20) and (17), we obtain

∑
a

2+|a|*a(�
f)6
∑
a

∑
i

2+|a|−+|i|r
a−i;02
+|i|*i(f)

6 sup
i

{∑
a

2+|a−i|r
a−i;0

}∑
i

2+|i|*i(f)

=
∑
a

2+|a|r
a;0
∑
i

2+|i|*i(f)

6 �
∑
i

2+|i|*i(f):

In particular, we have for any f∈C(S) that∑
a 2+|a|*a(�
f)∑
a 2+|a|*a(f)

6 �: (24)

Since the transition probability �
 has the Feller property, we get

d(��
; �̃�
) = sup
f∈C(S)

|�(�
f) − �̃(�
f)|∑
a 2+|a|*a(�
f)

∑
a 2+|a|*a(�
f)∑
a 2+|a|*a(f)

6 � sup
f∈C(S)

|�(�
f) − �̃(�
f)|∑
a 2+|a|*a(�
f)

6 � sup
g∈C(S)

|�(g) − �̃(g)|∑
a 2+|a|*a(g)

= �d(�; �̃)

due to (24). This proves our assertion.
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Our goal is now to show that Assumption 3:4 combined with the following contrac-
tion condition implies weak convergence of the sequence of empirical 1elds {Rx

t }t∈N
(x∈ Se) to a unique probability measure 
∗ on S.

Assumption 3.9. There exists a constant �¡ 1 − � such that

sup
x

d(�
(x; ·); ��(x; ·))6 �d(
; �) (25)

for all 
; �∈Mh(S).

Remark 3.10. Let us verify that our Assumption 3:9 holds true as soon as the
individual transition laws satisfy

sup
x

1
2‖�
(x; ·) − ��(x; ·)‖6 �d(
; �):

Indeed, since

sup
x

d(�
(x; ·); ��(x; ·)) = sup
x

sup
f∈C(S)

| ∫f(y)(�
(x; dy) −��(x; dy))|∑
a 2+|a|*a(f)

;

and because the vector r
;� = (r
;�a )a∈A with components

r
;�a := sup
x

1
2‖�
(x; ·) − ��(x; ·)‖ (26)

is an estimate for the product measures �
(x; ·) and ��(x; ·), we obtain

sup
x

d(�
(x; ·); ��(x; ·))6 sup
f∈C(S)

∑
a *a(f)r
;�a∑
a 2+|a|*a(f)

6 �d(
; �) sup
f∈C(S)

∑
a *a(f)∑

a 2+|a|*a(f)
= �d(
; �):

Example 3.11. Let us return to the individual transition laws introduced in (7). For
any 1xed 
∈Mh(S) we can write

�
( ax; {+1}) = g((xb)b∈N (a); m(
));

where m(
) :=
∫
S x0 d
 for 
∈Mh(S).

We assume that the mapping g satis1es a uniform Lipschitz condition in its second
argument, i.e.,

|g(· ; m) − g(· ; m̂)|6 �|m− m̂|:
For f(x) := x0 we obtain

sup
x

1
2‖�
(x; ·) − ��(x; ·)‖6 �|m(
) − m(�)|

= �
|
(f) − �(f)|∑

a 2+|a|*a(f)

6 � d(
; �)

for all 
; �∈Mh(S). In view of the previous remark, our Assumption 3.9 is satis1ed
whenever �¡ 1 − �.
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We are now going to prove the main theorem of this subsection.

Theorem 3.12. If our Assumptions 2:5; 3:4 and 3:9 are satis6ed; then there exists a
unique homogeneous random 6eld � on S such that


Rt(·) :=
∫
S
Rx
t (·)
(dx) w→ �(·) (t → ∞) (27)

for any initial distribution 
 on Se. Here
w→ denotes weak convergence of probability

measures.

Proof. Let us 1x x∈ Se. We are going to show that the sequence of empirical 1elds
{Rx

t }t∈N de1ned recursively by (12) satis1es a contraction condition with respect to
the metric d introduced in (13).

1. Due to Proposition 3.8, we know already that Assumption 3.4 implies

d(��
; �̃�
)6 �d(�; �̃) (28)

for any �; �̃; 
∈Mh(S).
2. For 
; �∈Mh(S), we can combine our Assumption 3.9 with (28) in order to obtain

d(
�
; ���)6 (� + �)d(
; �): (29)

Indeed, it follows from the de1nition of the metric d that

d(��
; ���)6 sup
x

d(�
(x; ·); ��(x; ·))

and, due to (28), this implies

d(
�
; ���)6 d(
�
; ��
) + d(��
; ���)

6 �d(
; �) + sup
x

d(�
(x; ·); ��(x; ·))

6 (� + �)d(
; �) (� + �¡ 1):

3. Let us now concentrate on the process {
Rt}t∈N. First, we 1x x∈ Se and analyze
the case 
= $x. Since R(x) =Rx

0 and because

Rx
t+1 =Rx

t �
t =Rx

0�Rx
0
· · ·�Rx

t
=Rx

t �Rx
t

(t = 0; 1; 2; : : :)

our estimate (29) yields the following contraction property for the sequence of
ergodic random 1elds {Rx

t }t∈N:

d(Rx
t+T ; R

x
t ) = d(Rx

t+T−1�Rx
t+T−1

; Rx
t−1�Rx

t−1
)

6 (� + �)d(Rx
t+T−1; R

x
t−1)

6 (� + �)td(Rx
T ; R

x
0)

6 2(� + �)t :
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Here, the last inequality follows from d(
; �)6 ‖
 − �‖6 2; see Remark 3.2. In
particular, we obtain that

sup
T

d(Rx
t+T ; R

x
t )6 2(� + �)t

which shows that {Rx
t }t∈N is a Cauchy sequence in the compact space M(S). Thus,

the sequence {Rx
t }t∈N converges weakly to some probability measure �x ∈M(S).

Since Rx
t ∈Mh(S) and because Mh(S) is a closed subset of M(S), the limit �x is

a homogeneous random 1eld. As the set Me(S) is dense in Mh(S) but not closed,
there is no reason to expect �x ∈Me(S). It is now easily seen that, for any initial
distribution 
 on Se, there exists a shift-invariant random 1eld �
 on S, such that

Rt

w→ �
 (t → ∞).
4. It remains to verify that �$x = �$y for all x; y∈ Se. This, however, follows from

d(Rx
t+1; R

y
t+1) = d(Rx

t �Rx
t
; Ry

t �Ry
t
)

6 (� + �)d(Rx
t ; R

y
t )

6 2(� + �)t+1t→∞→ 0:

This proves our assertion.

Let us now consider the case where the asymptotic behaviour of the macroscopic
process depends on the initial con1guration. To this end, we replace our Assumption
3.9 by the following weaker condition:

Assumption 3.13. For any 
∈Me(S), there exists constants t(
)∈N and �¡ 1 − �
such that

sup
x

d(�
s(x; ·); �
s�
s
(x; ·))6 �d(
s; 
s�
s) (30)

for all s¿ t(
). Here 
0 = 
 and 
s+1 = 
s�
s . That is, we require (25) to hold true
for all random 1elds � which take the form �= 
s�
s , s¿ t(
).

As an example where Assumption 3.13 holds true whereas our Assumption 3.9
is violated, we consider the following variant of the voter model analyzed in
Example 2.2.

Example 3.14. We put C = {0; 1}, and assume that the individual transition probability
takes the form

�a(x; +1) = �p(xa) + �ma(x) + �f(m(x))

where �; �; � are positive constants, where ma(x) denotes the proportion of “1” in the
neighborhood of site a and where f : [0; 1] → R is a non-linear function. The special
case f(m) = �m was analyzed in Example 2.2. In our present situation, the evolution of
the sequence of empirical averages is almost surely described by the non-linear relation
m(Xt+1) = F̂(m(Xt)) (t = 0; 1; : : :) where

F̂(m) := �{mp(1) + (1 − m)p(0)} + �m + �f(m):
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It is easily seen that our Assumption 3.9 is violated whenever the mapping F̂ has more
than one 1xed point.

Consider now the following situation: p(1) = 0; p(0) = 1
3 ; �= 1

6 ; �= 1
4 ; �= 3 and

f(m) := m3(1 − m2). In this case, our uniform Dobrushin–Vasserstein condition is
satis1ed with �06 1

2 and

F̂(m) =
1
24

+
5
24

m + 3m3(1 − m2):

The mapping F̂ has three 1xed points: m0 ≈ 0:07025; m1 ≈ 0:62885; m2 ≈ 0:75935.
Thus, our Assumption 3.9 does not hold. However, Assumption 3.13 is still satis1ed.
Indeed, an easy calculation shows that there exists a critical value

mc := F̂
−1

(m1) �=m1

such that the asymptotic behaviour of the sequence {m(Xt)}t∈N depends in the follow-
ing manner on the initial con1guration:

lim
t→∞m(Xt) =




m0 if m(x)∈ [0; m1) ∪ (mc; 1]

m1 if m(x)∈{m1; mc}
m2 otherwise

Px-a:s:

Since f′(m0)¡ 1
3 and |f′(m2)|¡ 1

3 , we see that

|f(m(Xt+1)) − f(m(Xt))|6 �|m(Xt+1) − m(Xt)| Px-a:s:

where �¡ 1
2 for all t su5ciently large. We can now proceed as in Example 3.11 in

order to obtain

sup
y

d(�Rx
t
(y; ·); �Rx

t �Rxt
(y; ·))6 �d(Rx

t ; R
x
t �Rx

t
);

where �0 + �¡ 1 for all t ∈N large enough.

Let us now establish a generalization of Theorem 3.12.

Theorem 3.15. Suppose that Assumptions 2:5; 3:4 and 3:13 are satis6ed. In this case,
the following holds true:
(i) For any x∈ Se, there exists a random 6eld �x such that Rx

t
w→�x as t → ∞.

(ii) For any initial con6guration 
 concentrated on Se, we have∫
Rx
t (·)
(dx) w→�
(·) :=

∫
�x(·)
(dx) (t → ∞):

Proof. Let us 1x x∈ Se. Without loss of generality we may assume that t(R(x)) = 1.
Using the same arguments as in the proof of Theorem 3.12 we get

d(Rx
t+1; R

x
t )6 2(� + �)t :

In particular, for any 3¿ 0, there exists t0 ∈N such that

sup
T

d(Rx
t+T ; R

x
t )6 2

∑
s¿t0

(� + �)s ¡ 3
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for all t¿ t0. Thus, {Rx
t }t∈N is again a Cauchy sequence with respect to the metric d,

and so there exists a homogeneous probability measure �x on S such that Rx
t

w→ �x as
t → ∞. This yields our assertion.

3.3. Macroscopic convergence: interactive transitions

Let us now return to the general setting of Section 2.2 and assume that the stochastic
kernels �
 are determined by suitable families of local speci1cations (�x;
)x∈S .

Suppose that we have translation invariant estimates r
a for the random 1elds �
(x; ·)
and �
(y; ·) on S where x=y oI a.

Remark 3.16. Under suitable conditions on the speci1cations �x;
 there exists a
constant 4¿ 1 such the vector r
a with components

r
a; i =
4
2

sup{‖�x;
b (· ; v) − �y;
b (· ; v)‖: x=y oI a; v∈ S; b∈A}

de1nes a translation invariant estimate for the random 1elds �
(x; ·) and �
(y; ·) on
S where x=y oI a; see Theorem V:2:2 in Simon (1993) or Theorem 8:20 in Georgii
(1989) for details.

We assume that the estimates r
a satisfy (17). Note, however, that in our present
situation (16) and (17) are no longer equivalent: due to the interactive structure in the
transition kernel �
, the function �
f does not belong to the class of local functions,
even if f∈L(S).

We also assume that one of our Assumptions 3.9 or 3.13 is satis1ed.

Remark 3.17. Under suitable conditions on the speci1cations �x;
 there exists a
constant 4¿ 1 such the vector r
;� with components

r
;�a =
4
2

sup
v;x

‖�x;
0 (· ; v) − �x;�0 (· ; v)‖ (31)

de1nes a translation invariant estimates for the random 1elds �
(x; ·) and ��(x; ·)
on S. Suppose now that

1
2 sup

v;x
‖�x;
0 (· ; v) − �x;�0 (· ; v)‖6 �

4
d(
; �):

In this case, we obtain

sup
x

d(�
(x; ·); ��(x; ·))6 �d(
; �);

and so our Assumption 3.9 holds; cf. Remark 3.10.

An inspection of the proofs of Proposition 3.8 and Theorems 3.12 and 3.15 shows
that all our arguments remain valid if the estimates r
a satisfy (17) and if the depen-
dence of the transition kernel �
 on the parameter 
 satis1es the contraction condition
speci1ed in our Assumptions 3.9 and 3.13, respectively.
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3.4. Microscopic convergence

In this subsection, we are going to prove that convergence on the macroscopic level
of empirical 1elds implies local convergence on the microscopic level. Under suitable
contraction and continuity assumptions we show that the microscopic and macroscopic
limit coincide. Thus, we have at the same time macroscopic and microscopic conver-
gence to the same random 1eld 
 on S.

Throughout this section, we assume that the sequence {Rx
t }t∈N (x∈ Se) converges in

the weak topology to some random 1eld �x on S. Recall that this convergence holds
under Assumption 3.13 and under our Dobrushin condition (17). Moreover we assume
that the behaviour of an individual agent depends continuously on the measure 
.

Assumption 3.18. Suppose that the measure �
(x; ·) is a Gibbs measure with respect
to a local speci1cation �x;
. There exists a constant �∗ such that

sup
x;v

1
2‖�x;
0 (· ; v) − �x;�0 (· ; v)‖6 �∗d(
; �): (32)

Remark 3.19. In the case where the measures �
(x; ·) take the product form (3), the
above assumption reduces to

sup
x

1
2‖�
(x; ·) − ��(x; ·)‖6 �∗d(
; �): (33)

Using a perturbation of the Dobrushin–Vasserstein contraction technique, we are now
going to show that macroscopic convergence implies microscopic convergence.

Theorem 3.20. Suppose that we have translation invariant estimates r
a for the ran-
dom 6elds �
(x; ·) and �
(y; ·) where x=y o= a and that our Assumptions 3:4 and
3:18 are satis6ed. Let 
 be an initial distribution which is concentrated on the set Se
and assume that the sequence of random 6elds {Rx

t }t∈N converges for 
-a.e. x∈ Se in
the weak topology to some random 6eld �x. Then the following holds true:
(i) The microscopic process {Xt}t∈N converges in law to a probability measure R�
.

The random 6eld R�
 is the unique equilibrium of the Feller kernel ��
 ; where
�
 :=

∫
�x
(dx). That is

R�
 = R�
��
 : (34)

(ii) The macroscopic and the microscopic limit coincide, i.e.; R�
 = �
. Thus; any
limiting distribution is characterized by the 6xed point property

�
 = �
��
 : (35)

Proof. Our proof extends an argument given in F'ollmer (1979a) for the case of product
kernels. For any initial distribution 
, we denote by E
 the expectation with respect
to the law P
. We shall 1rst consider the case 
= $x and prove that our microscopic
process converges in distribution to the unique equilibrium of the Feller kernel ��$x .
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1. Let us 1x x∈ Se, a 1nite set A ⊂ A and some B ⊂ CA. We are going to show that

lim
t→∞E$x [�

t1B −�t
�x1B] = 0: (36)

Here, �x := �$x . In Step 3 below, we use (36) and Vasserstein’s convergence theorem
in order to establish our assertion.

For t; T ∈N we can write

E$x�t+T (B) = E$x [�t
�x1B(XT )] + Rt;T ;

where we put

Rt;T := E$x [(�Rx
T
· · ·�Rx

T+t−1
−�t

�x)1B(XT )]:

In step 2 we show that limT→∞ |Rt;T |= 0 uniformly in t ∈N.
2. Note that

|Rt;T | =

∣∣∣∣∣
t∑

k=1

E$x [�Rx
T
· · ·�Rx

T+k−2
(�Rx

T+k−1
�t−k

�x −��x�
t−k
�x )1B(XT )]

∣∣∣∣∣
6

t∑
k=1

E$x
[
sup
y

|(�Rx
T+k−1

−��x)(�
t−k
�x 1B)(y)|

]
:

Since the stochastic kernel ��x has the Feller property we can introduce continuous
mappings gk : S → R (k ∈N) by

gk(z) := �t−k
�x 1B(z)

and so

|Rt;T |6
t∑

k=1

sup
y

∣∣∣∣
∫

gk(z){�Rx
T+k−1

(y; dz) −��x(y; dz)}
∣∣∣∣ :

For any k ∈N, let us de1ne a vector rR
x
k ;�x by analogy with (31). In view of Remark

3.17 our continuity assumption (32) yields

sup
y

∣∣∣∣
∫

gk(z){�Rx
T+k−1

(y; dz) −��x(y; dz)}
∣∣∣∣

6 4�∗∑
i

d(Rx
T+k−1; �x)*i(gk):

This implies

|Rt;T |6 4�∗∑
k

[∑
i

*i(gk)d(Rx
T+k−1; �x)

]

6 4�∗
(

sup
t¿T

d(Rx
t ; �x)

)∑
k; i

*i(gk):

Since the uniform Dobrushin–Vasserstein condition (16) is satis1ed it follows from
(21) that

∑
k; i

*i(gk)6 |A|
t∑

k=1

�t−k
0 6 |A| 1

1 − �0
:
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Thus, uniformly in t ∈N, we have

lim
T→∞

|Rt;T |6 |A|4�∗

1 − �0

(
lim

T→∞
sup
t¿T

d(Rx
t ; �x)

)
= 0 (37)

as the sequence of empirical 1elds {Rx
t }t∈N converges to �x in the weak topology.

This shows (36).
3. We shall now apply Vasserstein’s convergence theorem in order to establish (i).

Due to (37), we have that

lim
t;T→∞

|E$x [�t+T1B −�t+T
�x 1B]|

= lim
t;T→∞

|E$x�t
�x1B(XT ) + Rt;T − E$x�t

�x1B(XT )|= 0:

Due to (17), Vasserstein’s theorem yields the existence of a unique random 1eld R�x
on S such that �t

�x(y; ·) w→ R�x(·) as t → ∞ (y∈ S). This shows (i) for 
= $x since

lim
t→∞�t(x;B) = lim

t;T→∞
�t+T (x;B) = lim

t;T→∞
�t+T

�x (x;B) = R�x(B):

4. Let 
 be an initial distribution which is concentrated on the set Se. From our
preceding arguments it is easily seen that


�t w→ R�
;

where R�
 is the unique invariant measure of the kernel ��
 .
5. Let us now verify the 1xed-point property (35) and show that the limiting distribu-

tion both on the macroscopic and on the microscopic level coincide. Due to (17),
the Feller kernel ��
 admits a unique equilibrium, and so it is enough to show that
�
 = �
��
 . To this end, it su5ces to 1x x∈ Se and to consider the case 
= $x. In
view of Remark 3.17 our Assumption 3.18 yields

sup
x

d(�
(x; ·); ��(x; ·))6 4�∗d(
; �)

for some constant 4¿ 1. Thus, it follows from Proposition 3.8 and from the recur-
sive de1nition of the sequence {Rx

t }t∈N in (12) that

d(�x��x ; �x)

6d(�x��x ; �x�Rx
t
) + d(�x�Rx

t
; Rx

t �Rx
t
) + d(Rx

t �Rx
t
; �x)

6 sup
y

d(��x(y; ·); �Rx
t
(y; ·)) + d(�x; Rx

t ) + d(Rx
t+1; �x)

6 4�∗d(�x; Rx
t ) + d(�x; Rx

t ) + d(Rx
t+1; �x):

Since we assume that lim
t→∞d(Rx

t ; �x) = 0, this yields

�x = �x��x :
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Hence, it follows from (i) that �x = R�x, i.e., the limiting distribution on the micro-
scopic and on the macroscopic level coincide.

This proves our assertion.

Note that we have the following variant of Theorem 3.20.

Corollary 3.21. Let (M; dM ) be a metric space and 9 :Mh(S) → M be a measurable
mapping. Suppose we have a system of conditional probabilities �x;m which deter-
mines a unique random 6eld �m(x; ·) on S for any m∈M . In this case; each �x;9(R(x))

determines a unique measure �(x; ·) =�9(R(x))(x; ·). We assume that the local spec-
i6cations �x;m are spatially homogeneous and that the dependence of the individual
behaviour of agent a∈A on the macroscopic signal 9(R(x)) is continuous. It fol-
lows from the proof of Theorem 3:20 that convergence of the sequence {9(R(Xt)}t∈N
to some 9∗ implies weak convergence of the Markov chain {Xt}t∈N with transition
kernel � to the unique stationary measure 
∗ of the Feller kernel �9∗ .

Example 3.22. Let us return to the dynamical model (6). Since the macroscopic
process {m(Xt)}t∈N converges almost surely to m∗ =p(0)=(1 + p(0) − p(1)), the
microscopic process {Xt}t∈N converges in law to the unique equilibrium 
∗ of
the Feller kernel

�m∗(x; ·) =
∏
a∈A

�m∗({xb}b∈N (a); ·);

where

�m∗({xb}b∈N (a); 1) = �p(xa) + �ma(x) + �m∗:
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