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1. Introduction and overview Mean field games (MFGs) are a powerful tool to analyse
strategic interactions in large populations when each individual player has only a small impact on
the behavior of other players. In the economics literature, mean-field-type (or anonymous) games
were first considered by Jovanovic and Rosenthal [33] and later analyzed by many authors includ-
ing [8, 20, 29]. In the mathematical literature MFGs were independently introduced by Huang,
Malhamé and Caines [31] and Lasry and Lions [37]. MFGs have been successfully applied to vari-
ous economic problems, ranging from systemic risk management [15] to principal agent problems
[22, 39] and from portfolio optimization [36] to optimal exploitation of exhaustible resources [18].

In a standard MFG, each player i∈ {1, ...,N} chooses an action ui from a given set of admissible
controls that minimizes a cost functional of the form

J i(~u) =E
[∫ T

0

f(t,X i
t , µ̄

N
t , u

i
t)dt+ g(X i

T , µ̄
N
T )
∣∣X i = xi

]
(1)
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subject to the state dynamics{
dX i

t = b(t,X i
t , µ̄

N
t , u

i
t)dt+σ(t,X i

t , µ̄
N
t , u

i
t)dW

i
t ,

X i
0 =X i . (2)

Here, W 1, · · · ,WN are independent Brownian motions, and X 1, ...,XN are independent and iden-
tically distributed random variables with law ν that are independent of the Brownian motions. All
stochastic processes and random variables are defined on an underlying filtered probability space1.
The vector ~u= (u1, · · · , uN) denotes the action profile, and µ̄Nt := 1

N

∑N

j=1 δXjt
denotes the empirical

distribution of the individual players’ states at time t∈ [0, T ]. It is usually assumed that the players
observe their own initial state and know the common distribution ν of the other player’s initial
states.

The existence of approximate Nash equilibria for large populations can be established using a
representative agent approach. The idea is to approximate the dynamics of the empirical distribu-
tion of the states by a deterministic measure-valued process, and then to consider the optimization
problem of a representative player subject to the equilibrium constraint that the distribution of
the representative player’s state process under her optimal strategy coincides with the pre-specified
measure-valued process. More precisely, denoting by P(Rd) the space of probability measures on
Rd, by Law(X) the law of a stochastic process X and by X a random initial state with distribution
ν the resulting MFG can be formally described as follows:

1. fix a deterministic function t∈ [0, T ] 7→ µt ∈P(Rd);
2. solve the corresponding stochastic control problem :

infuE
[∫ T

0
f(t,XXt , µt, ut)dt+ g(XXT , µT )

∣∣∣X ] ,
subject to the state dynamics

dXXt = b(t,XXt , µt, ut)dt+σ(t,XXt , µt, ut)dWt,

X0 =X
3. solve Law(X∗,X ) = µ where X∗,X is the optimal state process from 2.

. (3)

Let µ∗ be a solution to the above fix point problem and let u∗ be the representative player’s
optimal response to µ∗ given X . Then u∗ = φ(X ,W ) for some measurable function φ from R×
C[0, T ] into a suitable function space, and each individual player’s optimal response to µ∗ given her
initial state X i = xi is u∗,i = φ(xi,W i). Under suitable assumptions the homogeneous action profile
(φ(·, ·), ..., φ(·, ·)) forms an ε-equilibrium in the original game if N is large enough.

There are basically four approaches to solve mean field games. In their original paper [37],
Lasry and Lions followed an analytic approach. They analyzed a coupled forward-backward PDE
system, where the backward component is the Hamiltion-Jacobi-Bellman equation arising from the
representative agent’s optimization problem, and the forward component is a Kolmogorov-Fokker-
Planck equation that characterizes the dynamics of the state process; see also [25]. Merging the
forward backward system into a single master equation, the dynamics of the MFG can alternatively
be described in terms of some form of second order PDE on the space of probability measures; see
[9, 11, 19, 21] for details. A more probabilistic approach was introduced by Carmona and Delarue
in [12]. Using a maximum principle of Pontryagin type, they showed that the fixed point problem
reduces to solving a McKean-Vlasov FBSDEs; see also [6, 17]. A relaxed solution concept to MFGs
was introduced by Lacker in [35] and later extended by various authors including [14, 23]. In this
paper we apply a probabilistic approach to analyze a novel class of MFGs arising in models of
optimal portfolio liquidation under market impact. Our existence and uniqueness of equilibrium
result is based on a new existence of solutions result for FBSDE systems with singular drivers.

1 We assume throughout that all filtrations are augmented by the null sets.
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1.1. Single player models of optimal portfolio liquidation Single-player portfolio liqui-
dation models have been extensively analyzed in recent years. Their main characteristic is a singu-
larity at the terminal time of the Hamilton-Jacobi-Bellmann equation. The majority of the optimal
liquidation literature assumes that only absolutely continuous trading strategies are allowed; see
e.g. [3, 28] and references therein. In such models the controlled state sequence follows a dynamics
of the form

Xt = x−
∫ t

0

ξs ds,

where x > 0 is the initial portfolio that a trader needs to unwind, and ξ is the trading rate. The
set of admissible controls is confined to those processes ξ that satisfy almost surely the liquidation
constraint

XT = 0.

It is typically assumed that the unaffected benchmark price process follows a one-dimensional
Brownian motion W (or some Brownian martingale) and that the trader’s transaction price is
given by

St = s0 +

∫ t

0

σs dWs−
∫ t

0

κsξs ds− ηtξt

where σ is a (sufficiently regular) stochastic volatility process. The integral term accounts for
permanent price impact, i.e. the impact of past trades on current prices, while the term ηtξt
accounts for the instantaneous impact that does not affect future transactions. The expected cost
functional is typically of the linear-quadratic form

E
[∫ T

0

(
κsξsXs + ηsξ

2
s +λsX

2
s

)
ds

]
where κ,η and λ are one-dimensional bounded adapted and non-negative processes. The process
λ describes the trader’s degree of risk aversion or her belief about the volatility process; it penal-
izes slow liquidation. The process η describes the degree of market illiquidity; it penalizes fast
liquidation. The process κ describes the impact of past trades on current transaction prices.

There are basically two approaches to overcome the challenges resulting from the terminal state
constraint. The majority of the literature, including Ankirchner et al. [3], Graewe et al. [27], Kruse
and Popier [34] and Popier [42, 43] considers finite approximations of the singular terminal value,
and then shows that the minimal solution to the value function with singular terminal condition
can be obtained by a monotone convergence argument. A second approach, originally introduced
in Graewe et al. [28] and further generalised in Graewe and Horst [26] is to determine the precise
asymptotic behaviour of a potential solution to the HJB equation at the terminal time, and to
characterize the value function in terms of a PDE or BSDE with finite terminal value yet singular
driver, for which the existence of a solution in a suitable space can be proved using standard fixed
point arguments.

If the transactions are not directly observable, then it is natural to assume that the permanent
impact is driven by the markets expectation about the traders transactions as in [5], given the
publicly observable information. It leads to a mean field control problem, which is not the focus of
our paper.

1.2. A MFG of optimal portfolio liquidation We consider a MFG of optimal portfolio
liquidation among asymmetrically informed players. In order to introduce the game, we fix a
probability space (Ω,G,P) that carries independent standard Brownian motions W 0,W 1, ...,WN

with W 0 in one dimension and W i in m−1 dimension and independent and identically distributed
one-dimensional random variables X 1, ....,XN with law ν that are independent of the Brownian
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motions. The Brownian motion W 0 drives the unaffected benchmark price process. We assume

that W 0 is observable by all agents. The Brownian motion W i is private information to player i

and determines that player’s cost function. We may think of W i as measuring a player’s individual

degree of market impact and/or subjective belief about the price volatility. The random variables

X 1, ....,XN specify the respective players’ initial portfolios. We assume that each player observes

the realization of her initial portfolio and knows the distribution of all the other initial portfolios.

Following [10] we assume that the transaction price for each player i= 1, ...,N is given by

Sit = si0 +

∫ t

0

σis dW
0
s −

∫ t

0

κis
N

N∑
j=1

ξjs ds− ηitξit.

In particular, the permanent price impact depends on the players’ average trading rate. Given

her initial portfolio X i = xi the optimization problem of player i= 1, ...,N is to minimize the cost

functional

JN,i
(
~ξ
)

=E

[∫ T

0

(
κit
N

N∑
j=1

ξjtX
i
t + ηit(ξ

i
t)

2 +λit(X
i
t)

2

)
dt
∣∣X i = xi

]
(4)

subject to the state dynamics

dX i
t =−ξit dt,

X i
0 =X i, X i

T = 0.
(5)

Here, ~ξ = (ξ1, · · · , ξN) is the vector of strategies of all the players. We assume that the one-

dimensional cost coefficients (κi, ηi, λi) have the same distribution across players and are adapted

to the filtration

Fi := (F it ,0≤ t≤ T ), with F it := σ(X i,W 0
s ,W

i
s ,0≤ s≤ t). (6)

Remark 1. As pointed above, we assume that all players observe the Brownian motion W 0

that drives the unaffected benchmark price process; this motivates the individual information sets.

Although we strongly believe that all our results carry over to the more general case where the

agents observe only the price process itself, we prefer to work under the stronger assumption that

W 0 is observable to simplify the analysis.

Our game is different from the majority of the MFG literature in at least three respects. First,

as in [16, 25] the players interact through the impact of their strategies rather than states on

the other players’ payoff functions. Second, all players observe the common Brownian motion W 0

that drives the benchmark price process. Hence, ours is a MFG with common noise. While MFGs

with common noise have been investigated before (see, e.g. [14]) the nature of both the common

and the idiosyncratic noise in our model is very different from the existing literature. Third, the

individual state dynamics are subject to a terminal state constraint arising from the liquidation

requirement. MFGs with terminal state constraint have been considered before in the literature

by means of so-called mean field (game) planning problems (MFGP) introduced by Lions in his

lectures at Collège de France (2009-2010). In these problems the terminal state constraint is given

by a target density of the state at the terminal time. While our problem formally belongs to the

literature on MFGP, see e.g. [1, 24, 44] and the references therein, ours seems to be the first paper

that considers a MFG with strict terminal state constraint.



Fu et al.: A Mean Field Game of Optimal Portfolio Liquidation

Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 5

1.2.1. The MFG In order to specify the resulting MFG, let W 0 and W be independent Brow-
nian motions of dimension 1 and m− 1, respectively2, and X be an independent one-dimensional
random variable with law ν defined on some probability space, again denoted (Ω,G,P). Let F0 :=
(F0

t ,0≤ t≤ T ) with F0
t = σ(W 0

s ,0≤ s≤ t) be the filtration generated by W 0 and let F := (Ft,0≤
t≤ T ) with Ft := σ(X ,W 0

s ,Ws,0≤ s≤ t). The MFG associated with the N -player game (4) and
(5) is then given by:

1. fix a F0 progressively measurable process µ (in some suitable space);

2. solve the corresponding constrained stochastic control problem :

infξ E
[∫ T

0
(κsµsXs + ηsξ

2
s +λsX

2
s ) ds

∣∣∣X ]
subsect to

dXt =−ξt dt,X0 =X and XT = 0;

3. search for the fixed point µt =E[ξ∗t |F0
t ], for a.e. t∈ [0, T ]

(7)

where ξ∗ is the optimal strategy from 2 and the processes (κ,η,λ) are adapted to the filtration F.
We denote by µ∗ a solution to the fixed point problem in Step 3.

We apply the probabilistic method to solve the MFG with terminal constraint (7). In a first step
we show how the analysis of our MFG can be reduced to the analysis of a conditional mean-field
type FBSDE. The forward component describes the optimal portfolio process; hence both its initial
and terminal condition are known. The backward component describes the optimal trading rate; its
terminal value is unknown. Making an affine ansatz, we show that the mean-field type FBSDE with
unkown terminal condition can be replaced by a coupled FBSDE with known initial and terminal
condition, yet singular driver. Proving the existence of a small time solution to this FBSDE by a
fixed point argument is not hard. The challenge is to prove the existence of a global solution on
the whole time interval. Under a weak interaction condition that has been used in the game theory
literature before (see, e.g. [29]) we prove the existence and uniqueness of a global solution by a
generalization of the method of continuation established in [30, 41] to linear-quadratic FBSDE
systems with singular driver. Under the additional assumption that all players share the same cost
structure, i.e. that

κi = κ(X i,W 0,W i), ηi = η(X i,W 0,W i), λi = λ(X i,W 0,W i)

for bounded measurable functions κ,η,λ we prove that each player’s best response to the mean-field
equilibrium µ∗ is of the form

ξ∗,i = φ(X i,W 0,W i)

for some function φ and that the resulting homogeneous action profile forms an ε-equilibrium in
the original N -player game.

The common information case where all the cost coefficients are measurable with respect to
the common factor can be analysed in greater detail. When different players hold different initial
portfolios, then the optimal portfolio processes are given as weighted averages of the players’ initial
portfolios and the differences of their own and the average initial portfolio. In this case, we show
that if the average initial portfolio is positive and a player holds an above average initial portfolio,
then her optimal portfolio process is always positive. If, however, a player holds a positive yet well
below average initial portfolio, then it is optimal to quickly unwind the position, to then take a
negative position and to buy the stock back by the end of the trading period. This is intuitive as
players with negative portfolios benefit from the negative price trends generated by other players

2 The same as N player game, we may interpret W 0 as the common information to all players and W as the private

information to the representative player.
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while the cost of unwinding a small portfolio is low. As such, our result suggests that traders with
small portfolios act as liquidity providers in equilibrium even if their initial holds are positive.

The benchmark case of deterministic coefficients can be solved in closed form. For this case we
show that when the strength of interaction κ in (7) is large and all players share the same initial
portfolio, the players initially trade very fast in equilibrium to avoid the negative drift generated
by the mean field interaction. Our model thus provides a possible explanation for large price
drops in markets with many strategically interacting homogenous investors. We also show that the
deterministic case is equivalent to a single player model with suitably adjusted cost terms.

Under mild additional assumptions on the market impact parameters we further prove that the
solution to the MFG can be approximated by the solutions to a sequence of MFGs where the
liquidation constraint is replaced by an increasing penalization of open positions at the terminal
time. The convergence result can be viewed as a consistency result for both, the unconstrained and
the constrained problem.

The three papers closest to our model are Cardaliaguet and Lehalle [10], Carmona and Lacker
[16], Huang, Jaimungal and Nourin [32]. In [16], the authors propose a specific portfolio liquidation
model where each players portfolio is subject to exogenous fluctuations (customer flow) described by
independent Brownian motions. As such, their model is much closer to a standard MFG than ours,
but no liquidation constraint is possible in their framework. The papers [10] and [32] consider mean
field models parameterized by different preferences and with major-minor players, respectively.
Again, no liquidation constraint is allowed. The model introduced in [10] is extended to portfolios
of correlated assets in [38] where the effect of trading flows on naive estimates of intraday volatility
and correlations is analyzed.

The remainder of the paper is organized as follows. In Section 2 we state and prove our exis-
tence and uniqueness of solutions result for the MFG (7) and establish additional results on the
equilibrium trading strategies and portfolio processes if all the players share the same information.
In Section 3 we prove that the solution to the MFG yields an ε-Nash equilibrium in the N -player
game. In Section 4 we prove that the MFG with singular terminal condition can be approximated
by MFGs that penalize open positions at the terminal time under additional assumptions on the
market impact term.

1.2.2. Notation and notational conventions Throughout, we adopt the convention that
C denotes a constant which may vary from line to line. Moreover, for a filtration G, Prog(G)
denotes the sigma-field of progressive subsets of [0, T ]×Ω and for I, which could be a subset of Rn,
n≥ 1 or R∪{+∞}, we consider the set of progressively measurable processes w.r.t. G:

PG([0, T ]×Ω; I) = {u : [0, T ]×Ω→ I | u is Prog(G)−measurable} .

We define the following subspaces of PG([0, T ]×Ω; I):

L∞G ([0, T ]×Ω; I) =

{
u∈PG([0, T ]×Ω; I); ‖u‖ := ess sup

t,ω
|u(t,ω)|<∞

}
;

LpG([0, T ]×Ω; I) =

{
u∈PG([0, T ]×Ω; I); E

(∫ T

0

|u(t,ω)|2dt
)p/2

<∞

}
;

SpG([0, T ]×Ω; I) =

{
u∈PG([0, T ]×Ω; I); E

(
sup

0≤t≤T
|u(t,ω)|p

)
<∞

}
.

Whenever the notation T− appears in the definition of a function space we mean the set of all
functions whose restriction satisfy the respective property on [0, τ ] for any τ < T , e.g., by ψ ∈
L2([0, T−]×Ω; I), we mean ψ ∈L2([0, τ ]×Ω; I) for any τ < T . For notational convenience, we put

D2
G([0, T ]×Ω; I) :=L2

G([0, T ]×Ω; I)∩S2
G([0, T−]×Ω; I).
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For a positive stochastic process u ∈ L∞G ([0, T ]×Ω; [0,∞)) we denote its upper and lower bound
by umax and umin, respectively.

2. The mean-field game In this section, we state and prove an existence and uniqueness
of solutions result for the MFG (7). The set of admissible controls for the representative player’s
liquidation problem is given by

AF(X ) :=

{
ξ ∈L2

F([0, T ]×Ω;R),

∫ T

0

ξs ds=X a.s.

}
.

For a given process µ∈L2
F0([0, T ]×Ω;R), the corresponding cost and value functions are given by

J(X , ξ;µ) :=E
[∫ T

0

(
κsXsµs + ηsξ

2
s +λsX

2
s

)
ds

∣∣∣∣X] ,
and

V (X ;µ) = inf
ξ∈AF(X )

J(X , ξ;µ),

respectively. The Hamiltonian is

H(t, ξ, x, y;µ) =−ξy+κtµx+ ηtξ
2 +λtx

2,

and the stochastic maximum principle suggests that the solution to the optimization problem can
be characterised in terms of the FBSDE

dXt =− ξt dt,
−dYt =(κtµt + 2λtXt) dt−Zt dW̃t,

X0 =X
XT =0,

(8)

where W̃ = (W 0,W ) is a m-dimensional Brownian motion. The process Y is called the adjoint
process to the controlled state process X. The liquidation constraint XT = 0 results in a singularity
of the value function at liquidation time; see [3, 28]. As a result, the terminal condition for Y
cannot be determined a priori. In particular, the first equation holds on [0, T ] while the second
equation holds on [0, T ). A standard approach yields the candidate optimal control

ξ∗t =
Yt
2ηt

. (9)

Taking the equilibrium condition into account suggests that the analysis of the MFG reduces to
the analysis of the following conditional mean-field type FBSDE:

dXt =− Yt
2ηt

dt,

−dYt =

(
κtE

[
Yt
2ηt

∣∣∣∣F0
t

]
+ 2λtXt

)
dt−Zt dW̃t,

X0 =X
XT =0.

(10)

We establish the existence and uniqueness of a solution to the preceding FBSDE in the following
space of weighted stochastic processes.
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Definition 1. For l ∈R, we introduce the space

Hl := {Y ∈PF([0, T ]×Ω;R∪{∞}) : (T − .)−lY· ∈ S2
F([0, T ]×Ω;R∪{∞})},

which is endowed with the norm

‖Y ‖Hl := ‖Y ‖l :=

(
E

[
sup

0≤t≤T

∣∣∣∣ Yt
(T − t)l

∣∣∣∣2
]) 1

2

,

and the space

Ml := {Y ∈PF([0, T ]×Ω;R∪{∞}) : (T − .)−lY· ∈L∞F ([0, T ]×Ω;R∪{∞})},

which is endowed with the norm

‖Y ‖Ml
:= ess sup

(t,ω)∈[0,T ]×Ω

|Yt|
(T − t)l

.

Fact 1. The following facts are readily verified:
• Hl ⊂H−1+l with ‖ · ‖H−1+l

≤ T‖ · ‖Hl .
• If K ∈Hl, with l > 0, then KT = 0 a.s.
• If K1 ∈M−1 and K2 ∈Hl, then K1K2 ∈H−1+l.

The first two properties also hold for the space Ml.
We assume throughout that the cost coefficients are bounded and that the dependence of an

individual player’s cost function on the average action is weak enough. The weak interaction con-
dition is consistent with the game theory literature on mean-field type games where some form of
moderate dependence condition is usually required to prove the existence and uniqueness of Nash
equilibria; see [29] and references therein. The condition is also consistent with the monotonicity
condition for FBSDE systems originally proposed by [30, 41] and the generalization to mean-field
type FBSDEs established in [7]. Specifically, we assume that the following condition is satisfied.
Assumption 1.
i) The processes κ, λ, 1/λ, η and 1/η belong to L∞F ([0, T ]×Ω; [0,∞)) and X ∈ L2(Ω) is inde-

pendent of W and W 0.
ii) There exists a constant θ > 0 such that

κmax

4ηmin

< θ < 4
λmin

κmax

. (11)

The following quantity will be important in our subsequent analysis:

α := ηmin/ηmax ∈ (0,1]. (12)

We are now ready to state our first major result.

Theorem 1. Under Assumption 1, there exists a unique solution

(X,Y,Z)∈Hα×L2
F([0, T ]×Ω;R)×L2

F([0, T−]×Ω;Rm)

to the FBSDE (10). Moreover, the process ξ∗ =
Y

2η
is an optimal control for the representative

player, X∗ =X is the optimal state process and the aggregation effect given by

µ∗t =E
[
Yt
2ηt

∣∣∣∣F0
t

]
, t∈ [0, T ) (13)

is the unique solution to the MFG (7). Finally, the value function is given by

V (X ;µ∗) =
1

2
A0X 2 +

1

2
B0X +

1

2
E
[∫ T

0

κsX
∗
sµ
∗
s ds

∣∣∣∣X] . (14)

Section 2.1 is devoted to the proof of Theorem 1 and Section 2.2 explores some particular cases.
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2.1. General existence and uniqueness of solutions In this section we prove our existence
and uniqueness of equilibrium result for the MFG (7). Decoupling the FBSDE (10) by Y =AX+B
yields the following system of Riccati type equations:

−dAt =

(
2λt−

A2
t

2ηt

)
dt−ZAt dW̃t,

−dBt =

(
κtE

[
1

2ηt
(AtXt +Bt)

∣∣∣∣F0
t

]
− AtBt

2ηt

)
dt−ZBt dW̃t,

AT =∞
BT =0.

(15)

The existence of a unique solution A∈M−1 to the first equation is established in Lemma 9 in the
appendix. Namely, there exists a unique process (A,ZA) such that A ∈M−1, ZA ∈ L2

F([0, T−]×
Ω;Rm), the dynamics is given on any interval [0, τ ], τ < T by the first equation of (15) and lim

t→T
At =

+∞=AT . Moreover A satisfies the a priori estimate (48) in Lemma 9 in the appendix, from which
it also follows that

exp

(
−
∫ s

r

Au
2ηu

du

)
≤
(
T − s
T − r

)α
(16)

for any 0≤ r≤ s < T , where α is given by (12). Hence we need to solve the following FBSDE:

dXt =− 1

2ηt
(AtXt +Bt)dt,

−dBt =

(
κtE

[
1

2ηt
(AtXt +Bt)

∣∣∣∣F0
t

]
− AtBt

2ηt

)
dt−ZBt dW̃t,

X0 =X
BT =0.

(17)

Our approach is based on an extension of the method of continuation that accounts for the sin-
gularity of the process A at the terminal time and hence for the singularity in the driver of the
FBSDE. We apply the method of continuation to the triple (X,B,Y =AX +B) rather than the
pair (X,B), and search for solutions

(X,B,Y =AX +B)∈Hα×Hγ ×L2
F([0, T ]×Ω;R),

where α was defined in (12) and γ is any constant

0<γ <α∧ 1/2.

Specifically, the method of continuation will be applied to the FBSDE

dXt =− 1

2ηt
(AtXt +Bt)dt,

−dBt =

(
κtpE

[
1

2ηt
(AtXt +Bt)

∣∣∣∣F0
t

]
+ ft−

AtBt
2ηt

)
dt−ZBt dW̃t,

dYt =

(
−2λtXt−κtpE

[
AtXt +Bt

2ηt

∣∣∣∣F0
t

]
− ft

)
dt+ZYt dW̃t,

X0 =X
BT =0,

(18)

where p ∈ [0,1], f ∈ L2
F([0, T ]× Ω;R). We emphasise that the first two equations hold on [0, T ],

while the third equation holds on [0, T ).
In a first step, we provide an a priori estimate for the processes ZB and ZY .
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Lemma 1. Assume that f ∈L2
F([0, T ]×Ω;R) and that there exists a solution (X,B,Y,ZB,ZY )

to (18) such that

(X,B,Y )∈Hα×Hγ ×S2
F([0, T−]×Ω,R).

Then

(ZB,ZY )∈L2
F([0, T ]×Ω;Rm)×L2

F([0, T−]×Ω;Rm)

and there exists a constant C > 0 such that

E
[∫ T

0

|ZBt |2 dt
]
≤C

(
‖B‖2γ + ‖X‖2α +E

[∫ T

0

|ft|2 dt
])

and such that for each τ < T

E
[∫ τ

0

|ZYs |2 ds
]
≤C

(
E
[

sup
0≤t≤τ

|Yt|2
]

+ ‖X‖2α + ‖B‖2γ +E
[∫ T

0

|ft|2 dt
])

.

In particular,
∫ ·

0
ZBs dW̃s is a true martingale on [0, T ] and

∫ ·
0
ZYs dW̃s is a true martingale on [0, τ ],

for each τ < T .

Proof. Since A∈M−1 and ηmin > 0 there exists a constant C > 0 that is independent of s∈ [0, T ]
such that∣∣∣∣AsBs2ηs

−κsE
[
AsXs +Bs

2ηs

∣∣∣∣F0
s

]
− fs

∣∣∣∣≤C [ |Bs|T − s
+E

(
|Xs|
T − s

+ |Bs|
∣∣∣∣F0

s

)
+ |fs|

]
.

Let us notice that∫ T

t

ZBs dW̃s =−Bt−
∫ T

t

{
AsBs
2ηs

−κspE
[
AsXs +Bs

2ηs

∣∣∣∣F0
s

]
− fs

}
ds.

Since (X,B)∈Hα×Hγ , this implies∣∣∣∣∫ T

t

ZBs dW̃s

∣∣∣∣≤ C sup
0≤t≤T

|Bt|
(T − t)γ

+C sup
0≤s≤T

E
[

sup
0≤t≤T

|Xt|
(T − t)α

∣∣∣∣F0
s

]
+C sup

0≤s≤T
E
[

sup
0≤t≤T

|Bt|
(T − t)γ

∣∣∣∣F0
s

]
+

∫ T

0

|ft|dt.

Thus, by Doob’s maximal inequality,

E

[
sup

0≤t≤T

∣∣∣∣∫ T

t

ZBs dW̃s

∣∣∣∣2
]
≤C

(
‖B‖2γ + ‖X‖2α +E

[∫ T

0

|ft|2 dt
])

.

Similarly, for each 0< τ < T ,

E

[
sup

0≤t≤τ

∣∣∣∣∫ τ

t

ZYs dW̃s

∣∣∣∣2
]
≤C

(
E
[

sup
0≤t≤τ

|Yt|2
]

+ ‖X‖2α + ‖B‖2γ +E
[∫ T

0

|ft|2 dt
])

<∞.

�
In a second step, we now prove an existence of solutions result for the FBSDE (18) with p= 0.
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Lemma 2. For p = 0 there exists for every given data f ∈ L2
F([0, T ]×Ω;R) a unique solution

(X,B,Y,ZB,ZY ) ∈Hα×Hγ ×D2
F([0, T ]×Ω;R)×L2

F([0, T ]×Ω;Rm)×L2
F([0, T−]×Ω;Rm) to (18).

It is given by 
Bt = E

[∫ T

t

fse
−

∫ s
t (2ηr)−1Ar dr ds

∣∣∣∣Ft] , t∈ [0, T ]

Xt = X e−
∫ t
0 (2ηr)−1Ar dr−

∫ t

0

(2ηs)
−1Bse

−
∫ t
s (2ηr)−1Ar dr ds, t∈ [0, T ]

Yt =AtXt +Bt, t∈ [0, T ),

and ZB ∈L2
F([0, T ]×Ω;Rm) and ZY ∈L2

F([0, T−]×Ω;Rm) are given by the martingale representa-
tion theorem.

Proof. For p= 0 the process X solves a linear ODE and the pair (B,ZB) solves a linear BSDE.
Hence, the explicit representations follow from the respective solution formulas. It remains to
establish the desired integration properties. To this end, let us recall that A has positive values.
Thus we first apply Hölder’s inequality in order to obtain,

|Bt|
(T − t)γ

≤ 1

(T − t)γ
E
[∫ T

t

|fs|ds
∣∣∣∣Ft]≤(E[∫ T

t

|fs|
1

1−γ ds

∣∣∣∣Ft])1−γ

<∞.

Using Doob’s maximal inequality, Jensen’s inequality and the fact that γ < 1
2

we conclude that,

E

[
sup

0≤t≤T

∣∣∣∣ Bt
(T − t)γ

∣∣∣∣2
]
≤ E

[
sup

0≤t≤T

(
E
[∫ T

0

|fs|
1

1−γ ds

∣∣∣∣Ft])2(1−γ)
]
≤CE

[∫ T

0

|fs|2 ds
]
.

From (16), the solution formula for X and using that γ < α we obtain that X ∈Hα because

|Xt| ≤
|X |(T − t)α

Tα
+C

∫ t

0

|Bs|
(
T − t
T − s

)α
ds

≤ |X |(T − t)
α

Tα
+C

(
sup

0≤s≤T

|Bs|
(T − s)γ

)(∫ t

0

(T − s)γ−α ds
)

(T − t)α

≤ (T − t)α
{
|X |
Tα

+
CT 1+γ−α

1 + γ−α

(
sup

0≤s≤T

|Bs|
(T − s)γ

)}
.

In view of (48) and the previously established properties of X and B we have Y ∈ S2
F([0, T−]×Ω;R)

with

E

[
sup
t∈[0,τ ]

Y 2
t

]
≤ C

(T − τ)2(1−α)
‖X‖2α + (T − τ)2γ‖B‖2γ . (19)

For any ε > 0, integration by part implies that

XT−εYT−ε−X0Y0 =

∫ T−ε

0

Xt dYt +

∫ T−ε

0

Yt dXt

= −
∫ T−ε

0

Xt(2λtXt + ft)dt−
∫ T−ε

0

Y 2
t

2ηt
dt+

∫ T−ε

0

XtZ
Y
t dW̃t.

The positivity of the process A along with the definition of the process Y yields XT−εYT−ε ≥
XT−εBT−ε. Thus, taking expectations on both sides of the above equation, letting ε→ 0 and using
XT =BT = 0 yields

−E [X0Y0]≤−E
[∫ T

0

2λtX
2
t dt

]
−E

[∫ T

0

Xtft dt

]
−E

[∫ T

0

Y 2
t

2ηt
dt

]
.
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Together with the inequality (19) for τ = 0 this shows that

E
[∫ T

0

Y 2
t dt

]
≤CE

[∫ T

0

X2
t dt

]
+CE

[∫ T

0

f2
t dt

]
+C‖X‖2α +C‖B‖2γ <∞.

�
In a third step we now establish the continuation result for the FBSDE (18) from which we shall

then deduce the existence of a unique global solution to our original MFG.

Lemma 3. If for some p∈ [0,1] the FBSDE (18) is for every data f ∈L2
F([0, T ]×Ω;R) uniquely

solvable in Hα×Hγ ×D2
F([0, T ]×Ω;R)×L2

F([0, T ]×Ω;Rm)×L2
F([0, T−]×Ω;Rm), then this holds

also for p+ d with d> 0 small enough (independent of p and f).

Proof. Let us fix d> 0, Y ∈L2
F([0, T ]×Ω;R) and f ∈L2

F([0, T ]×Ω;R) and consider the following
system:

dX̃t = − 1

2ηt
(AtX̃t + B̃t)dt,

−dB̃t =

(
κtpE

[
1

2ηt

(
AtX̃t + B̃t

)∣∣∣∣F0
t

]
+κtdE

[
Yt
2ηt

∣∣∣∣F0
t

]
+ ft−

AtB̃t
2ηt

)
dt−ZB̃t dW̃t,

dỸt =

(
−2λtX̃t−κtpE

[
AtX̃t + B̃t

2ηt

∣∣∣∣∣F0
t

]
−κtdE

[
Yt
2ηt

∣∣∣∣F0
t

]
− ft

)
dt+Z Ỹt dW̃t,

X̃0 = X
B̃T = 0.

(20)

Then

f(Y ) := κdE
[
Y

2η

∣∣∣∣F0

]
+ f ∈L2

F([0, T ]×Ω;R).

Thus, by assumption there exists a unique solution

(X̃, B̃, Ỹ ,ZB̃,Z Ỹ )∈Hα×Hγ ×D2
F([0, T ]×Ω;R)×L2

F([0, T ]×Ω;Rm)×L2
F([0, T−]×Ω;Rm)

to (20), and Ỹ =AX̃ + B̃. This defines a mapping Y 7→ (X̃, B̃, Ỹ ) from L2
F([0, T ]×Ω;R) to Hα×

Hγ ×L2
F([0, T ]×Ω;R) and hence also a mapping (X,B,Y ) 7→ (X̃, B̃, Ỹ ) on Hα×Hγ ×L2

F([0, T ]×
Ω;R). In what follows we prove that this second mapping is a contraction for some d> 0. For the
unique fixed point the system (20) reduces to the system (18) with p replaced by p+ d. This then
yields the desired result.

In order to establish the contraction property, we denote for two processes Y,Y ′ ∈L2
F([0, T ]×Ω;R)

by (X̃, B̃, Ỹ ) and (X̃ ′, B̃′, Ỹ ′) the corresponding processes defined by (20) and put

ξ̃t =
Ỹt
2ηt

, ξ̃′t =
Ỹ ′t
2ηt

, µ̃t =E
[
ξ̃t

∣∣∣F0
t

]
, µ̃′t =E

[
ξ̃′t

∣∣∣F0
t

]
.

For any ε > 0 integration by part yields that

(X̃
′
T−ε− X̃T−ε)ỸT−ε =

∫ T−ε

0

(X̃
′

s− X̃s)dỸs +

∫ T−ε

0

Ỹs d(X̃
′

s− X̃s)

= −
∫ T−ε

0

(X̃
′

s− X̃s)(pκsµ̃s + 2λsX̃s)ds−
∫ T−ε

0

Ỹs(ξ̃
′
s− ξ̃s)ds

−
∫ T−ε

0

(X̃
′

s− X̃s)f(Ys)ds+

∫ T−ε

0

(X̃
′

s− X̃s)Z
Ỹ
s dW̃s
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and

(X̃T−ε− X̃
′

T−ε)Ỹ
′

T−ε = −
∫ T−ε

0

(X̃s− X̃
′

s)(pκsµ̃
′

s + 2λsX̃
′

s)ds−
∫ T−ε

0

Ỹ
′

s (ξ̃s− ξ̃′s)ds

−
∫ T−ε

0

(X̃s− X̃
′

s)f(Y
′

s )ds+

∫ T−ε

0

(X̃s− X̃
′

s)Z
Ỹ
′

s dW̃s.

Taking the sum of these two equations and using that

(X̃T−ε− X̃
′

T−ε)(Ỹ
′

T−ε− ỸT−ε) = −AT−ε(X̃T−ε− X̃
′

T−ε)
2− (X̃T−ε− X̃

′

T−ε)(B̃T−ε− B̃
′

T−ε)

≤ − (X̃T−ε− X̃
′
T−ε)(B̃T−ε− B̃

′
T−ε)

yields

2

∫ T−ε

0

ηs(ξ̃
′
s− ξ̃s)2 ds+ 2

∫ T−ε

0

λs(X̃
′

s− X̃s)
2 ds

+

∫ T−ε

0

(X̃
′

s− X̃s)(f(Y ′s )− f(Ys))ds+

∫ T−ε

0

(X̃s− X̃
′

s)(Z̃
Y
′

s − Z̃Ys )dW̃s

≤ − (X̃T−ε− X̃
′

T−ε)(B̃T−ε− B̃
′

T−ε) +

∫ T−ε

0

[
pκs(µ̃s− µ̃′s)(X̃ ′s− X̃s)

]
ds.

Taking expectations on both sides drops the martingale part. Then we can pass to the limit as ε→ 0
to drop the term (X̃T−ε− X̃

′
T−ε)(B̃T−ε− B̃

′
T−ε) because X̃, X̃ ′ ∈Hα and B̃, B̃′ ∈Hγ . Furthermore,

since 2|ab| ≤ θa2 + b2/θ for any θ > 0, we obtain:

E
[∫ T

0

∣∣∣pκs(µ̃s− µ̃′s)(X̃ ′s− X̃s)
∣∣∣ ds]≤ pκmax

2θ
E
[∫ T

0

|µ̃s− µ̃′s|
2
ds

]
+

pκmaxθ

2
E
[∫ T

0

∣∣∣X̃ ′s− X̃s

∣∣∣2 ds]
≤ κmax

2θ
E
[∫ T

0

∣∣∣ξ̃s− ξ̃′s∣∣∣2 ds]+
κmaxθ

2
E
[∫ T

0

∣∣∣X̃ ′s− X̃s

∣∣∣2 ds] ,
and

E
[∫ T

0

∣∣∣(X̃ ′s− X̃s)(f(Y ′s )− f(Ys))
∣∣∣ ds]≤ dE

[∫ T

0

κs

∣∣∣X̃ ′s− X̃s

∣∣∣E[ |Y ′s −Ys|
2ηs

∣∣∣∣F0
s

]
ds

]
≤ d

κmax

2ηmin

E
[∫ T

0

∣∣∣X̃ ′s− X̃s

∣∣∣E [ |Y ′s −Ys||F0
s

]
ds

]
≤ d

κmax

4ηmin

E
[∫ T

0

(
X̃
′

s− X̃s

)2

ds

]
+ d

κmax

4ηmin

E
[∫ T

0

E
[
(Y ′s −Ys)2

∣∣F0
s

]
ds

]
.

All these inequalities imply that for any θ > 0

(
2ηmin−

κmax

2θ

)
E
[∫ T

0

(ξ̃′s− ξ̃s)2 ds

]
+
(

2λmin−
κmax

2
θ
)
E
[∫ T

0

(X̃
′

s− X̃s)
2 ds

]
≤ κmax

4ηmin

dE
[∫ T

0

(X̃ ′s− X̃s)
2 ds

]
+
κmax

4ηmin

dE
[∫ T

0

(Y ′s −Ys)2 ds

]
.

In view of Assumption 1 we can choose a θ > 0 such that

2ηmin−
κmax

2θ
> 0, 2λmin−

κmaxθ

2
> 0,
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which implies that there exists a constant C depending only on the coefficients κ, λ and η, such

that

E
[∫ T

0

(ξ̃′s− ξ̃s)2 ds

]
+E

[∫ T

0

(X̃
′

s− X̃s)
2 ds

]
≤ CdE

[∫ T

0

(X̃ ′s− X̃s)
2 ds

]
+CdE

[∫ T

0

(Y ′s −Ys)2 ds

]
.

Thus, when d is small enough,

E
[∫ T

0

|Ỹt− Ỹ ′t |2 dt
]
≤ aE

[∫ T

0

|Yt−Y ′t |2 dt
]

for some a< 1. We notice that the bound on d only depends on κ, η and λ.

Now using the definition of ξ̃ and ξ̃′ the solution formula for linear BSDEs yields

|B̃t− B̃′t| ≤ κmaxE
[∫ T

t

{
pE
[
|ξ̃s− ξ̃′s|

∣∣∣∣F0
s

]
+ dE

[
|Ys−Y ′s |

2ηs

∣∣∣∣F0
s

]}
ds

∣∣∣∣Ft] .
Thus

|B̃t− B̃′t| ≤ C(T − t)γE
[∫ T

t

E
[
|ξ̃s− ξ̃′s|

1
1−γ

∣∣∣F0
s

]
ds

∣∣∣∣Ft]1−γ

+Cd(T − t)γE
[∫ T

t

E
[
|Ys−Y ′s |

1
1−γ

∣∣∣F0
s

]
ds

∣∣∣∣Ft]1−γ

.

Since 2γ < 1, Doob’s maximal inequality along with the previously established L2 bounds yields

E

[
sup
t∈[0,T ]

|B̃t− B̃′t|2

(T − t)2γ

]
≤CE

[∫ T

0

|ξ̃s− ξ̃′s|2ds
]

+Cd2E
[∫ T

0

|Ys−Y ′s |2ds
]
.

Now using the dynamics of X̃ and X̃ ′ we obtain

|X̃t− X̃ ′t|=
∣∣∣∣∫ t

0

−{p(2ηs)
−1(B̃s− B̃′s)}e−

∫ t
s (2ηr)−1Ar dr ds

∣∣∣∣
≤ C

∫ t

0

{|B̃s− B̃′s|}
(
T − t
T − s

)α
ds

≤ C
T 1+γ−α

1 + γ−α
(T − t)α sup

0≤s≤T

|B̃s− B̃′s|
(T − s)γ

.

Hence this leads to

E

[
sup
t∈[0,T ]

|X̃t− X̃ ′t|2

(T − t)2α

]
≤C‖B̃s− B̃′s‖2γ .

To summarize, we obtain a constant d such that (X,B,Y )→ (X̃, B̃, Ỹ ) is a contraction in Hα×
Hγ ×L2

F([0, T ]×Ω;R). Since Ỹ =AX̃ + B̃, Ỹ ∈D2
F([0, T ]×Ω;R) and using Lemma 1, we see that
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the following system admits a unique solution (X̃, B̃, Ỹ ,ZB̃,Z Ỹ ) ∈Hα ×Hγ ×D2
F([0, T ]×Ω;R)×

L2
F([0, T ]×Ω;Rm)×L2

F([0, T−]×Ω;Rm):

dX̃t = − 1

2ηt
(AtX̃t + B̃t)dt,

−dB̃t =

(
κtpE

[
1

2ηt

(
AtX̃t + B̃t

)∣∣∣∣F0
t

]
+κtdE

[
Ỹt
2ηt

∣∣∣∣∣F0
t

]
+ ft−

AtB̃t
2ηt

)
dt−ZB̃t dW̃t,

dỸt =

(
−2λtX̃t−κtpE

[
AtX̃t + B̃t

2ηt

∣∣∣∣∣F0
t

]
−κtdE

[
Ỹt
2ηt

∣∣∣∣∣F0
t

]
− ft

)
dt+Z Ỹt dW̃t,

X̃0 = X
B̃T = 0.

Using again the relation Ỹ =AX̃ + B̃, the above system is equivalent to (18) with p replaced by
p+ d. This proves the assertion. �

Using Lemmata 1, 2 and 3 and by induction on p, we obtain the following result.

Proposition 1. There exists a unique solution (X,B,Y,ZB,ZY ) ∈ Hα × Hγ × D2
F([0, T ] ×

Ω;R)× L2
F([0, T ]× Ω;Rm)× L2

F([0, T−]× Ω;Rm) to the FBSDEs (10) and (17). Moreover, there
exists a constant C > 0 depending on η, λ, κ, T and ‖X‖L2, such that

‖X‖Hα + ‖B‖Hγ +E
[∫ T

0

|Yt|2 dt
]
≤C.

From the equations (17), (9) and recalling Y = AX +B, where (X,Y,B) is from Proposition 1,
we obtain the following candidates of the optimal portfolio process X∗ and the optimal trading
strategy ξ∗ for the representative player:

X∗t =Xt =X e−
∫ t
0
Ar
2ηr

dr−
∫ t

0

Bs
2ηs

e−
∫ t
s
Ar
2ηr

dr ds,

ξ∗t =
Yt
2ηt

=
AtXt +Bt

2ηt
=X e−

∫ t
0
Ar
2ηr

dr At
2ηt

+
Bt
2ηt
− At

2ηt

∫ t

0

Bs
2ηs

e−
∫ t
s
Ar
2ηr

dr ds.

(21)

By construction, X∗T = 0 and hence ξ∗ is an admissible liquidation strategy. The following propo-
sition shows that it is indeed the optimal liquidation strategy and that its conditional expectation
defines the desired equilibrium for our MFG. In particular, it proves Theorem 1.

Proposition 2. The process ξ∗ given by (21) or equivalently by (9) is an optimal control for
the representative player, X∗ is the related optimal state process, and the aggregation effect given
by µ∗ :=E[ξ∗|F0] is the solution to the MFG (7). Moreover, the value function is given by (14).

Proof. Let (X,B,Y ) be the solution given by Proposition 1. For any ξ ∈AF(X ), let Xξ be the
corresponding state process. Then it holds that,

lim
s↗T

E
[
Xξ
sYs|X

]
= 0. (22)

Indeed, since A∈M−1, for any 0≤ s < T∣∣E [Xξ
sYs|X

]∣∣= ∣∣E [Xξ
s (XsAs +Bs)|X

]∣∣
≤ C

T − s
E
[
(Xξ

s )2 + (Xs)
2|X
]

+E
[
|Xξ

sBs||X
]

=
C

T − s
E

[(∫ T

s

ξu du

)2

+

(∫ T

s

ξ∗u du

)2 ∣∣∣∣X
]

+E
[
|Xξ

sBs||X
]

≤CE
[∫ T

s

ξ2
u du+

∫ T

s

(ξ∗u)2 du

∣∣∣∣X]+E
[
|Xξ

sBs||X
] s↗T−−−→ 0.
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With this, we can now show that ξ∗ is a best response against µ∗. In fact, for each ε > 0, the
convexity of the Hamiltonian yields

E
[∫ T−ε

0

(
κsµ

∗
sX

ξ
s + ηsξ

2
s +λs(X

ξ
s )2
)
ds

∣∣∣∣X]−E
[∫ T−ε

0

(
κsµ

∗
sXs + ηs(ξ

∗
s )

2 +λs(Xs)
2
)
ds

∣∣∣∣X]
= E

[∫ T−ε

0

(
H(s, ξs,X

ξ
s , Ys;µ

∗)−H(s, ξ∗s ,Xs, Ys;µ
∗) + (ξs− ξ∗s )Ys

)
ds

∣∣∣∣X]
≥ E

[∫ T−ε

0

(H(s, ξ∗s ,X
ξ
s , Ys;µ

∗)−H(s, ξ∗,Xs, Ys;µ
∗) + (ξs− ξ∗s )Ys)ds

∣∣∣∣X]
≥ E

[∫ T−ε

0

(
(κsµ

∗
s + 2λsXs)(X

ξ
s −Xs) + (ξs− ξ∗s )Ys

)
ds

∣∣∣∣X] .
Furthermore, integration by part implies that for any ε > 0,

YT−ε(XT−ε−Xξ
T−ε)

= Y0(X0−Xξ
0) +

∫ T−ε

0

(Xs−Xξ
s )dYs +

∫ T−ε

0

Ys d(Xs−Xξ
s )

= −
∫ T−ε

0

(κsµ
∗
s + 2λsXs)(Xs−Xξ

s )ds+

∫ T−ε

0

ZYs (Xs−Xξ
s )dW̃s

−
∫ T−ε

0

Ys(ξ
∗
s − ξs)ds.

(23)

Therefore,

E
[∫ T−ε

0

(
κsµ

∗
sX

ξ
s + ηsξ

2
s +λs(X

ξ
s )2
)
ds

∣∣∣∣X]−E
[∫ T−ε

0

(
κsµ

∗
sXs + ηs(ξ

∗
s )

2 +λs(Xs)
2
)
ds

∣∣∣∣X]
≥E

[
YT−ε(XT−ε−Xξ

T−ε)

∣∣∣∣X] .
The equation (22) does indeed yield

lim
ε→0

E
[
YT−ε(XT−ε−Xξ

T−ε)|X
]

= 0.

Using the Lebesgue convergence theorem and taking ε→ 0, we obtain

E
[∫ T

0

(
κsXsµ

∗
s + ηsξ

2
s +λsX

2
s

)
ds

∣∣∣∣X]−E
[∫ T

0

(
κsXsµ

∗
s + η∗sξ

2
s +λs(Xs)

2
)
ds

∣∣∣∣X]≥ 0.

In other words J(X , ξ;µ∗)−J(X , ξ∗;µ∗)≥ 0. Finally, (22) and (23) again yield

V (X ;µ∗) =
1

2
A0X 2 +

1

2
B0X +

1

2
E
[∫ T

0

κsXsµ
∗
s ds

∣∣∣∣X] .
Now assume µ′ is another equilibrium, i.e. there is an optimal control ξ′ such that J(X , ξ;µ′) ≥
J(X , ξ′;µ′) for any ξ, and µ′ = E[ξ′|F0]. Note that J(X , ξ;µ′) is strictly convex for ξ. Thus, there
is a unique optimal control, which must satisfy ξ′ = Y ′/2η, where (X ′, Y ′) is the solution to (8)
with µ replaced by µ′. By the uniqueness of the solution of (10), it must hold that µ′ = µ∗ as well
as ξ′ = ξ∗. �

Remark 2. If we suppose that X = x is a deterministic initial value of the state process at
time τ > 0, then we can define the space of admissible controls as

AQ(τ,x) :=

{
ξ ∈L2

Q(τ,T ) :

∫ T

τ

ξs ds= x

}
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where Q= (Qt)0≤t≤T is the filtration generated by W and W 0. Assuming that the cost coefficients
satisfy Assumption 1 with F replaced by Q, the same arguments as before show that the FBSDE

Xs =x−
∫ s

τ

Yt
2ηt

dt, XT = 0,

Ys =Yr +

∫ r

s

(
κtE

[
Yt
2ηt

∣∣∣∣F0
t

]
+ 2λtXt

)
dt+

∫ r

s

Zt dW̃t, r < T

has a unique solution (X,Y = AX + B,Z) with (X,B) ∈ Hα ×Hγ and µ∗ = E(Y/(2η)|F0) is a
solution of the MFG starting at time τ . Moreover the value function is given by:

V (τ,x;µ∗) =
1

2
Aτx

2 +
1

2
Bτx+

1

2
E
[∫ T

τ

κsXsµ
∗
s ds

∣∣∣∣Qτ] .
Since (X,B)∈Hα×Hγ and ξ∗ ∈AQ(τ,x),

Bτx+E
[∫ T

τ

κsµ
∗
sXs ds

∣∣∣∣Qτ]
≤ x(T − τ)γ sup

τ≤t≤T

∣∣∣∣ Bt
(T − t)γ

∣∣∣∣+κmax(T − τ)αE
[∫ T

τ

|µ∗s|ds sup
τ≤t≤T

∣∣∣∣ Xt

(T − t)α

∣∣∣∣∣∣∣∣Qτ] τ↗T−−−→ 0.

Since Aτ →+∞ as τ tends to T , we get the following terminal condition for the value function:

lim
τ↑T

V (τ,x;µ) =

{
0, x= 0;

∞, x 6= 0.

2.2. Common information environments The benchmark case where all players share the
same information, except for their initial value can be analyzed in greater detail. In this section
we therefore assume that all randomness is generated by the common Brownian motion W 0 and
the initial value X .
Assumption 2. The processes κ, λ, η and 1/η belong to L∞F0([0, T ]×Ω; [0,∞)).

The weak interaction condition (11) is not required in this section. Under the common information
assumption the conditional mean-field FBSDE (10) reduces to the following FBSDE:

dXt =− Yt
2ηt

dt,

−dYt =

(
κt
2ηt

E
[
Yt
∣∣F0

t

]
+ 2λtXt

)
dt−Zt dW 0

t ,

X0 =X ,
XT = 0.

(24)

2.2.1. Common initial portfolio In this subsection we further assume that the initial port-
folio is common to all players, i.e. X = x ∈ R. In this case all processes are F0-adapted and the
mean-field FBSDE (24) simplifies to the regular FBSDE

dXt =− Yt
2ηt

dt,

−dYt =

(
κtYt
2ηt

+ 2λtXt

)
dt−Zt dW 0

t ,

X0 = x,

XT = 0.

(25)
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In this setting, we can check that Y is given by Y =AκX where

− dAκt =

(
2λt +

κtA
κ
t

2ηt
− (Aκt )2

2ηt

)
dt−ZA

κ

t dW 0
t , AκT =∞. (26)

This singular terminal condition on Aκ is necessary to satisfy the constraint XT = 0. This equation
has a unique solution, due to Corollary 1 in the appendix. By (25),

Xt = xe−
∫ t
0
Aκr
2ηr

dr.

The candidate of the optimal strategy is ξ∗ = Y/2η, where Y is the solution to (25). Since both Y
and η are F0-adapted, the consistency condition (13) reads µ∗ =E[ξ∗|F0] = ξ∗.

Lemma 4. Under Assumption 2, the processes Aκ, X, Y = AκX and ξ∗ = µ∗ = Y
2η

have the
same sign as x. Moreover

Aκ ∈M−1, X ∈Mα, Y ∈Mα−1, ξ
∗ ∈Mα−1.

Proof. Let Ãκt =Aκt e
∫ t
0
κs
2ηs

ds. Due to Lemma 9 in the appendix, the following estimate holds for
any 0≤ t < T :

1

E
[∫ T

t
1

2ηs
e−

∫ s
0
κr
2ηr

dr ds
∣∣∣F0

t

] ≤ Ãκt .
Hence the process Aκt is bounded from below by:

Aκt ≥
e−

∫ t
0
κr
2ηr

dr

E
[∫ T

t
1

2ηs
e−

∫ s
0
κr
2ηr

dr ds
∣∣∣F0

t

] =
1

E
[∫ T

t
1

2ηs
e−

∫ s
t
κr
2ηr

dr ds
∣∣∣F0

t

] ≥ 2ηmin

1

(T − t)
. (27)

Hence (16) holds:

e−
∫ t
0
Aκr
2ηr

dr ≤ exp

(
−2ηmin

∫ t

0

1

2ηr(T − r)
dr

)
≤
(
T − t
T

)α
.

The conclusion on X can be deduced immediately. Again from Lemma 9 in the appendix, Ãκ is
bounded from above:

Ãκt ≤
1

(T − t)2
E
[∫ T

t

(
2ηse

∫ s
0
κr
2ηr

dr + 2(T − s)2λse
∫ s
0
κr
2ηr

dr
)
ds

∣∣∣∣F0
t

]
.

Thus we get an upper bound on Aκ:

Aκt ≤
e−

∫ t
0
κr
2ηr

dr

(T − t)2
E
[∫ T

t

(
2ηse

∫ s
0
κr
2ηr

dr + 2(T − s)2λse
∫ s
0
κr
2ηr

dr
)
ds

∣∣∣∣F0
t

]
≤ 2

(T − t)2
E
[
ηmaxe

∫ T
0

κr
2ηr

dr(T − t) +
1

3
λmaxe

∫ T
0

κr
2ηr

dr(T − t)3

∣∣∣∣F0
t

]
≤ 2

(T − t)
e
κmaxT
2ηmin

[
ηmax +

λmaxT
2

3

]
.

Collecting all inequalities we get that Aκ ∈M−1 and

|ξ∗t |=
Aκt |Xt|

2ηt
= |x|A

κ
t e
−

∫ t
0
Aκr
2ηr

dr

2ηt

≤ |x|
ηminTα

[
ηmax +

λmaxT
2

3

]
e
κmaxT
2ηmin (T − t)α−1

.

A similar inequality holds for Y . �



Fu et al.: A Mean Field Game of Optimal Portfolio Liquidation

Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 19

It follows from the preceding lemma that Y is a non-negative or non-positive supermartingale
so the limit of Y at the terminal time T exists and is finite. Since X ∈ Mα, we deduce that
limt↗T YtXt = 0. Moreover, the process Z belongs to LpF0([0, T−]×Ω;R) for any p.

The following theorem verifies that ξ∗ is optimal. The proof is the similar to Proposition 2.

Theorem 2. Under Assumption 2 and if the initial value is deterministic, ξ∗(= µ∗) is the
unique optimal control as well as the equilibrium to MFG (7). Moreover the value function is given
by:

V (x;µ∗) =
1

2
Aκ0x

2 +
1

2
E
[∫ T

0

κsµ
∗
sXs ds

]
, (28)

and is non-negative.

2.2.2. Private initial portfolio Let us now return to the problem (24). Theorem 1 implies
there exists a unique soluton (X,Y,Z) to (24). From the solution to (25), we deduce that

µ∗t =
1

2ηt
E[Yt

∣∣F0
t ] =

E[X ]

2ηt
Aκt e

−
∫ t
0
Aκr
2ηr

dr,

where Aκ solves the BSDE (26). Since Y is given by Y =AX +B, we obtain (see equation (15) in
Section 2.1) that 

−dAt =

(
2λt−

A2
t

2ηt

)
dt−ZAt dW 0

t , AT = +∞

−dBt =

(
κtµ

∗
t −

AtBt
2ηt

)
dt−ZBt dW 0

t , BT = 0.
(29)

Note that A and B are F0-adapted. Thereby we have an explicit solution: for t∈ [0, T ]
Bt = E

[∫ T

t

κsµ
∗
se
−

∫ s
t (2ηr)−1Ar dr ds

∣∣∣∣F0
t

]
,

Xt = X e−
∫ t
0 (2ηr)−1Ar dr−

∫ t

0

(2ηs)
−1Bse

−
∫ t
s (2ηr)−1Ar dr ds,

Yt =AtXt +Bt.

Again from the general analysis of Section 2.1, the system (29) has a unique solution; similar
arguments as in the proof of Proposition 2 can be applied to verify that the optimal state process
for a given initial position X = x∈R is given by:

X∗,xt = (x−E[X ])e−
∫ t
0 (2ηr)−1Ar dr +E[X ]e−

∫ t
0 (2ηr)−1Aκr dr. (30)

Thus, if different players hold different initial portfolios, then a trader’s optimal position consists
of a weighted sum of the competitors’ average portfolio size E[X ] and the deviation of the own
initial position from that average.
Remark 3. By [40, Theorem 2.4] the unique solution Aκ,n to the BSDE

−dAκ,nt =

(
2λt +

κtA
κ,n
t

2ηt
− (Aκ,nt )2

2ηt

)
dt−ZA

κ,n

t dW 0
t , Aκ,nT = 2n

is increasing in κ. By Lemma 10 in the appendix, this result carries over to the process Aκ. In
particular, Aκ ≥A. Moreover Aκ0 >A0 if κ> 0 on some set of positive measure.

The preceding remark shows that the dependence of the optimal portfolio process on κ decreases
if E[X ]> 0. It also suggests that - contrary to the previous case - the sign of the optimal portfolio
process X∗ may change on the interval [0, T ]. In fact, if E[X ]> 0 and x≥E[X ], then X∗,x remains

non-negative on [0, T ]. However, if 0 < x < ζE[X ] where ζ := 1 − exp
(
A0−Aκ0
2ηmax

t
)
> 0, then X∗,x

becomes negative shortly after the initial time; see also Figure 2 below.



Fu et al.: A Mean Field Game of Optimal Portfolio Liquidation

20 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

2.2.3. Constant cost coefficients In this section, we consider a deterministic benchmark

example that can be solved explicitly.

Assumption 3. The processes λ, κ, η are positive constants.

Under the preceding assumption, the Riccati equation (26) reduces to

−dAκt =

(
2λ+

κAκt
2η
− (Aκt )2

2η

)
dt, AκT =∞.

Its explicit solution is given by

Aκt = 2ηγ coth (γ(T − t)) +
κ

2

where

γ :=

√
λ

η
+

κ2

16η2
.

If all players share the same initial portfolio (see Subsection 2.2.1), then the optimal portfolio

process is given by

X∗t = exp

(
− κ

4η
t

)
sinh(γ(T − t))

sinh(γT )
x (31)

and the optimal liquidation rate is given by

ξ∗t =

(
γ coth(γ(T − t)) +

κ

4η

)
X∗t

= exp

(
− κ

4η
t

)(
γ cosh(γ(T − t))

sinh(γT )
+
κ sinh(γ(T − t))

4η sinh(γT )

)
x.

When κ→ 0, then ξ∗t →
γ̃ cosh(γ̃(T−t))

sinh(γ̃T )
x with γ̃ =

√
λ
η
. This corresponds to the benchmark model

in [2]. This convergence can also be seen from Figure 1. Furthermore, we see that—as in the

corresponding single player models—the optimal liquidation rate is always positive, i.e., round trips

are not beneficial. Moreover, we notice that the portfolio process (31) corresponds to the optimal

portfolio process in an Almgren–Chriss model with adjusted risk aversion λ̃ = λ+ κ2

16η
and with

additional exponential decay of rate κ
4η

.

When κ→∞, then ξ∗0→∞ while ξ∗t → 0 for t > 0. That is, when the impact of interaction is very

strong, then the players trade very fast initially and very slowly afterwards. The intuitive reason is

that in this case an individual player would benefit from trading fast slightly before his competitors

start trading in order to avoid the negative drift generated by the mean-field interaction. As all the

players are statistically identical, they “coordinate” on an equilibrium trading strategy as depicted

in Figure 2. Thus, our model provides a possible explanation for large price increases or decreases

in markets with strategically interacting players with similar preferences.

If the players hold different initial portfolios (Subsection 2.2.2), then (30) shows that the optimal

portfolio process is given by

X∗,xt = (x−E[X ])
sinh(γ̃(T − t))

sinh(γ̃T )
+ exp

(
− κ

4η
t

)
sinh(γ(T − t))

sinh(γT )
E[X ].

Figure 2 confirms that the sign of X∗,x is indeed changing when x is small.
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Figure 1. Current state X∗ (left) and optimal liquidation rate ξ∗ (right) corresponding to parameters T = 1, x= 1,
λ= 5 and η= 5. The solid line corresponds to κ= 0, that is the Almgren-Chriss model with temporary impact.
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Figure 2. Current state X∗,x corresponding to parameters T = 1, E[X ] = 1, λ= 5, η = 5 and κ= 100 for different
values of the initial portfolio x.

3. Approximate Nash Equilibrium In this section we show that an ε-Nash equilibrium
for the N player portfolio liquidation game can be constructed from the solution to the MFG (7)
when the number of players is large if all players share the same cost structure.
Assumption 4. Assume for any i= 1, · · · ,N , κi, ηi and λi admit the following expression

κit = κ(t,X i,W i
·∧t,W

0
·∧t), ηit = η(t,X i,W i

·∧t,W
0
·∧t), λit = λ(t,X i,W i

·∧t,W
0
·∧t)

for some non-negative deterministic bounded and measurable functions κ, η and λ.
The next result is an adaptation to the Yamada-Watanabe result for FBSDE. The proof follows

from the same arguments given in, e.g. [13] and [4].
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Lemma 5. There exists a measurable function Φ : R× (C[0, T ])2→Hα × (C[0, T−])2 such that
for any i= 1, · · · ,N (

X i
t , Y

i
t ,

∫ t

0

Zids

)
0≤t≤T

= Φ(X i,W i,W 0),

where (X i, Y i,Zi) is the solution to FBSDE (10) associated with (W 0,X i,W i, κi, ηi, λi). In partic-
ular, there exists a function φ independent of (X 1, · · · ,XN ,W 0,W 1, . . . ,WN) such that

ξ∗,i = φ(X i,W 0,W i), (32)

where ξ∗,i is an optimal control for agent i associated with (W 0,X i,W i, κi, ηi, λi), given by (9).

In view of the above lemma, under Assumption 4 each player’s unique best response ξ∗,i to the
mean-field equilibrium µ∗ can be represented in terms of the function φ as in (32). In particular,
each individual action has the same distribution as the mean-field equilibrium:

µ∗t =E[ξ∗,it |F0
t ], a.s. a.e. (33)

Proposition 1 guarantees the existence of a constant C such that

E
[∫ T

0

|ξ∗,it |2 dt
]
≤C, (34)

and Lemma 5 yields a real-valued function ψ, which is independent of i, such that

E
[∫ T

0

|ξ∗,it |2 dt
∣∣∣∣X i = xi

]
=ψ(xi), (35)

Before we prove the main result of this section, we recall the cost functional JN,i
(
~ξ
)

from (4).

Theorem 3. Assume that Assumption 4 is satisfied and that the admissible control space for
each player i= 1, . . . ,N is given by

Ai :=

{
ξ ∈AFi(x

i) :E
[∫ T

0

|ξt|2 dt
∣∣∣∣X i = xi

]
≤M(xi)

}
for some fixed positive function M such that ψ≤M . Then, for each 1≤ i≤N and each ξi ∈Ai,

JN,i
(
~ξ∗
)
≤ JN,i(ξi, ξ∗,−i) +O

(
1√
N

)
,

where ξ∗,i is given by (32), (ξi, ξ∗,−i) = (ξ∗,1, · · · , ξ∗,i−1, ξi, ξ∗,i+1, · · · , ξ∗,N) and O
(

1√
N

)
is to be

interpreted as g(xi)√
N

for some real-valued function g independent of i.

Proof. By the symmetry of the N player game, it is sufficient to show the result for Player 1.
We first estimate the following term:

E

∫ T

0

(
µ∗t −

1

N

N∑
j=1

ξ∗,jt

)2

dt

∣∣∣∣∣X 1 = x1


=

1

N 2
E

[∫ T

0

∑
i6=j

(
µ∗t − ξ

∗,i
t

) (
µ∗t − ξ

∗,j
t

)
dt

∣∣∣∣∣X 1 = x1

]
+

1

N 2
E

[∫ T

0

N∑
j=1

(
µ∗t − ξ

∗,j
t

)2
dt

∣∣∣∣∣X 1 = x1

]
.
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Using (34) and (35), the second term is bounded by
2(M(x1) + (2N − 1)C)

N 2
. For the first term,

if i, j 6= 1, then the conditional expectation reduces to the expectation and since ξ∗,i and ξ∗,j are
conditionally independent given W 0 for i 6= j,

E

[∫ T

0

(
µ∗t − ξ

∗,i
t

) (
µ∗t − ξ

∗,j
t

)
dt

∣∣∣∣∣X 1 = x1

]
= 0, i 6= j, i, j 6= 1.

If i= 1 6= j, then we see from Lemma 5 that

E

[∫ T

0

(
µ∗t − ξ

∗,1
t

) (
µ∗t − ξ

∗,j
t

)
dt

∣∣∣∣∣X 1 = x1

]
=E

[∫ T

0

Ψ(t, x1,W 1,W 0)
(
µ∗t − ξ

∗,j
t

)
dt

]
for some real-valued function Ψ. Using again conditional independence and (33) we see that this
term vanishes as well. As a result,

E

∫ T

0

(
µ∗t −

1

N

N∑
j=1

ξ∗,jt

)2

dt

∣∣∣∣∣X 1 = x1

≤ 2(M(x1) + (2N − 1)C)

N 2
. (36)

We are now ready to the prove the ε-equilibrium property of ~ξ∗. By (35), we have that ξ∗,1 ∈A1.
For a given strategy ξ ∈A1, let Xξ be the corresponding state process and let J1(·;µ∗) be Player
1’s cost function when the average trading rate is replaced by the mean-field equilibrium. By
Proposition 2, J1(ξ;µ∗)≥ J1(ξ∗,1;µ∗), which implies:

JN,1(ξ, ξ∗,2, · · · , ξ∗,N)−JN,1(ξ∗,1, · · · , ξ∗,N)

≥ E

[∫ T

0

(
κ1
t

(
1

N

N∑
j=2

ξ∗,jt +
1

N
ξt

)
Xξ
t + η1

t ξ
2
t +λ1

t (X
ξ
t )2

)
dt

∣∣∣∣∣X 1 = x1

]

−E

[∫ T

0

(
κ1
tµ
∗
tX

ξ
t + η1

t (ξt)
2 +λ1

t (X
ξ
t )2
)
dt

∣∣∣∣∣X 1 = x1

]

+E

[∫ T

0

(
κ1
tµ
∗
tX
∗,1
t + η1

t (ξ
∗,1
t )2 +λ1

t (X
∗,1
t )2

)
dt

∣∣∣∣∣X 1 = x1

]

−E

[∫ T

0

(
κ1
t

1

N

N∑
j=1

ξ∗,jt X∗,1t + η1
t (ξ
∗,1
t )2 +λ1

t (X
∗,1
t )2

)
dt

∣∣∣∣∣X 1 = x1

]
:= I1 + I2.

For the first difference I1, using (36) we have that

sup
ξ∈A1

|I1|

≤ κmax

N
sup
ξ∈A1

E

[∫ T

0

|Xξ
t ||ξt|dt

∣∣∣∣∣X 1 = x1

]
+κmax sup

ξ∈A1

E

[∫ T

0

|Xξ
t |

∣∣∣∣∣ 1

N

N∑
j=2

ξ∗,jt −µ∗t

∣∣∣∣∣ dt
∣∣∣∣∣X 1 = x1

]

≤ κmax

N
sup
ξ∈A1

(
E

[∫ T

0

|Xξ
t |2 dt

∣∣∣∣∣X 1 = x1

]) 1
2

sup
ξ∈A1

(
E

[∫ T

0

|ξt|2 dt

∣∣∣∣∣X 1 = x1

]) 1
2

+κmax sup
ξ∈A1

(
E

[∫ T

0

|Xξ
t |2 dt

∣∣∣∣∣X 1 = x1

]) 1
2

E

∫ T

0

∣∣∣∣∣ 1

N

N∑
j=1

ξ∗,jt −µ∗t −
1

N
ξ∗,1t

∣∣∣∣∣
2

dt

∣∣∣∣∣X 1 = x1

 1
2

≤ M(x1)κmaxT

N
+

2κmaxT
√
M(x1)

N

(√
M(x1) +

√
2(M(x1) + (2N − 1)C)

)
.
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For the second difference I2, again using (36), we have that

I2 ≤ κmax

(
E
[∫ T

0

|X∗,1t |2 dt
∣∣∣∣X 1 = x1

]) 1
2

E

∫ T

0

∣∣∣∣∣µ∗t − 1

N

N∑
j=1

ξ∗,jt

∣∣∣∣∣
2

dt

∣∣∣∣∣∣X 1 = x1

 1
2

≤
2κmaxT

√
M(x1)

√
(M(x1) + (2N − 1)C)

N

This proves the assertion. �

4. Approximation by unconstrained MFGs In this section, we prove that the solution to
our singular MFG can be approximated by the solutions to non-singular MFGs under additional
assumptions on the market impact parameter. Specifically, we consider the following unconstrained
MFGs: 

1. fix a process µ;

2. solve the standard optimization problem: minimize

Jn(ξ;µ) =E

[∫ T

0

(
κtµtXt + ηtξ

2
t +λtX

2
t

)
dt+nX2

T

∣∣∣∣∣X
]

such that dXt =−ξt dt, X0 =X ;

3. search for the fixed point µt =E[ξ∗,Xt |F0
t ], for a.e. t∈ [0, T ].

(37)

We will need the following assumption on the solution A ∈M−1 to the first equation in (15)
with the terminal condition +∞. It implies in particular that X∗ ∈H1.
Assumption 5. There exists a constant C such that for any 0≤ r≤ s < T

exp

(
−
∫ s

r

Au
2ηu

du

)
≤C

(
T − s
T − r

)
.

The following result is proven in the appendix.

Lemma 6. Assumption 5 holds under each of the following conditions:
• η is deterministic;
• 1/η is a positive martingale;
• 1/η has uncorrelated multiplicative increments, namely for any 0≤ s≤ t

E
[
ηs
ηt

∣∣∣∣Fs]=E
[
ηs
ηt

]
.

Using the same arguments as in Section 2, the unconstrained control problem leads to the
following conditional mean field FBSDE:

dXn
t =

(
−A

n
tX

n
t +Bn

t

2ηt

)
dt,

−dBn
t =

(
−A

n
tB

n
t

2ηt
+κtE

[
AntX

n
t +Bn

t

2ηt

∣∣∣∣F0
t

])
dt−ZB

n

t dW̃t,

dY n
t =

(
−2λtX

n
t −κtE

[
AntX

n
t +Bn

t

2ηt

∣∣∣∣F0
t

])
dt+ZY

n

t dW̃t,

Xn
0 = X ,

Bn
T = 0,

Y n
T = 2nXn

T ,

(38)
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where −dAnt =

{
2λt−

(Ant )2

2ηt

}
dt−ZA

n

t dW̃t,

AnT = 2n.
(39)

The existence of a solution (An,ZA
n
) to the BSDE (39) can be deduced from Lemma 10. By the

same lemma the sequence {An} is a non-decreasing sequence converging pointwise to A and there
exists a constant C> 0 such for any n,

‖An‖M−1
≤ ‖An‖Mn

−1
≤ C,

where the space Mn
l is defined as

Mn
l :=

{
U ∈PF([0, T ]×Ω;R∪{∞}) :

(
T − .+ ηmin

n

)−l
U· ∈L∞F ([0, T ]×Ω;R∪{∞})

}
,

and endowed with the norm

‖U‖Mn
l

:= ess sup
(t,ω)×[0,T ]×Ω

|Ut|(
T − t+ ηmin

n

)l .
We shall also need the following analogs to the space Hν :

Hn
l :=

{
U ∈PF([0, T ]×Ω;R∪{∞}) :

(
T − .+ ηmin

n

)−l
U· ∈ S2

F([0, T ]×Ω;R∪{∞})
}
,

endowed with the norm

‖U‖n,l :=

E

 sup
0≤t≤T

∣∣∣∣∣ Ut(
T − t+ ηmin

n

)l
∣∣∣∣∣
2
 1

2

.

The next result can be obtained using similar arguments as in the proof of Theorem 1. In fact,
we have a slightly stronger result.

Theorem 4. Assume that Assumption 1 holds and that X is a square integrable random vari-
able. Then, for any fixed p∈ [0,1] and f ∈L2

F([0, T ]×Ω;R), there exists a unique solution

(Xn,Bn, Y n,ZB
n

,ZY
n

)∈Hn
α×Hnγ ×S2

F([0, T ]×Ω;R)×L2
F([0, T ]×Ω;Rm)×L2

F([0, T ]×Ω;Rm)

to the following FBSDE system:

dXn
t = − 1

2ηt
(AntX

n
t +Bn

t )dt,

−dBn
t =

(
κtpE

[
1

2ηt
(AntX

n
t +Bn

t )

∣∣∣∣F0
t

]
+ ft−

AntB
n
t

2ηt

)
dt−ZB

n

t dW̃t,

dY n
t =

(
−2λtX

n
t −κtpE

[
AntX

n
t +Bn

t

2ηt

∣∣∣∣F0
t

]
− ft

)
dt+ZY

n

t dW̃t,

Xn
0 = X

Bn
T = 0,

Y n
T = 2nXn

T .

(40)

Proof. The proof is similar to that of Theorem 1. We only need to note that by Lemma 10,

e−
∫ t
s
Anr
2ηr

dr ≤
(
T − t+ ηmin

n

T − s+ ηmin
n

)α
.

�
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In order to establish the convergence of the value functions of the unconstrained problems to
the value function of the constrained problem we need a uniform norm estimate for the sequence
(Xn,Bn, Y n).

Lemma 7. Let Assumption 1 hold. There exists a constant C> 0 such that

‖Xn‖n,α + ‖Bn‖n,γ +E
[∫ T

0

|Y n
t |2 dt

]
≤ C, (41)

for any n where (Xn,Bn, Y n) is the unique solution to (38).

Proof. The proof is split into three steps.

Step 1. When p= 0 in (40), there exists R ∈R independent of n such that

‖Xn‖n,α + ‖Bn‖n,γ +

(
E
[∫ T

0

|Y n
t |2 dt

]) 1
2

≤R.

This bound follows from modifications of arguments given in the proof of Lemma 2. In fact,

‖Bn‖n,γ ≤ ‖Bn‖γ ≤C‖f‖L2 ≤R1.

Moreover,

|Xn
t | ≤

|X |(T − t+ ηmin
n

)α

(T + ηmin
n

)α
+C

∫ t

0

|Bn
s |
(
T − t+ ηmin

n

T − s+ ηmin
n

)α
ds.

This implies ‖Xn‖n,α ≤R2. Finally, by analogy to the proof of Lemma 3, doing integration by part
for XnY n, we have

E
[∫ T

0

(Y n
t )2 dt

]
≤CE

[∫ T

0

(Xn
t )2 dt

]
+CE

[∫ T

0

f2
t dt

]
≤R3.

Step 2. Suppose that for some p∈ [0,1], the solution to (40) satisfies

‖Xn‖n,α + ‖Bn‖n,γ +

(
E
[∫ T

0

|Y n
t |2 dt

]) 1
2

≤ kR,

for some k ≥ 1 independent of n. Then there exists d> 0 independent of p such that the solution
(X̃n, B̃n, Ỹ n) to (40) with p replaced by p+ d satisfies the same estimate for some K >k:

‖X̃n‖n,α + ‖B̃n‖n,γ +

(
E
[∫ T

0

|Ỹ n
t |2 dt

]) 1
2

≤KR. (42)

To prove this assertion, we introduce for any given Y n, f ∈L2
F([0, T ]×Ω;R) the FBSDE system

dX̃n
t = − 1

2ηt
(Ant X̃

n
t + B̃n

t )dt,

−dB̃n
t =

(
κtpE

[
1

2ηt

(
Ant X̃

n
t + B̃n

t

)∣∣∣∣F0
t

]
+κtdE

[
Y n
t

2ηt

∣∣∣∣F0
t

]
+ ft−

Ant B̃
n
t

2ηt

)
dt−ZB̃

n

t dW̃t,

dỸ n
t =

(
−2λtX̃

n
t −κtpE

[
Ant X̃

n
t + B̃n

t

2ηt

∣∣∣∣∣F0
t

]
−κtdE

[
Y n
t

2ηt

∣∣∣∣F0
t

]
− ft

)
dt+Z Ỹ

n

t dW̃t,

X̃n
0 = X ,

B̃n
T = 0,

Ỹ n
T = 2nX̃n

T .

(43)
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Arguing as in the proof of Theorem 4, there exists a unique solution to (43). This defines a mapping

Γ : Y n→ Ỹ n.

on L2
F([0, T ]×Ω;R). We now show the Γ has a unique fixed point and that this fixed point belongs

to BL2

2kR(0), the subset of L2
F([0, T ]×Ω;R) such that the L2-norm is bounded by 2kR.

By the same arguments as in the proof as Lemma 3 we have

E
[∫ T

0

|Γ(Y n)(t)−Γ(Y
n
)(t)|2 dt

]
≤CdE

[∫ T

0

|Y n
t −Y

n

t |2 dt
]
≤ 1

4
E
[∫ T

0

|Y n
t −Y

n

t |2 dt
]
,

where C does not depend on n and d is small enough but independent of p and of n. Taking Y
n

= 0,
we have (

E
[∫ T

0

|Ỹ n
t |2 dt

]) 1
2

≤ 1

2

(
E
[∫ T

0

|Y n
t |2 dt

]) 1
2

+

(
E
[∫ T

0

|Γ(0)(t)|2 dt
]) 1

2

.

Note that Γ(0) corresponds to the solution to (40) with p. By assumption,(
E
[∫ T

0

|Γ(0)(t)|2 dt
]) 1

2

≤ kR.

Thus, if we assume Y n ∈BL2

2kR, (
E
[∫ T

0

|Ỹ n
t |2 dt

]) 1
2

≤ 2kR.

This implies that Γ is a mapping from BL2

2kR(0) to itself. Since BL2

2kR(0) is a Banach space the unique
fixed point belongs to BL2

2kR(0). This yields the desired L2 estimate for Ỹ .
Let (X̃n, B̃n) be the solution corresponding to Ỹ n and p+ d. Then, by Hölder’s inequality,∣∣∣B̃n

t

∣∣∣
(T − t)γ

≤ 1

(T − t)γ
E

[∫ T

t

κs(p+ d)E

[
|Ỹ n
s |

2ηs

∣∣∣∣∣F0
s

]
ds

∣∣∣∣∣Ft
]

≤ κmax

2ηmin

(
E
[∫ T

t

E
[
|Ỹ n
s |

1
1−γ

∣∣∣F0
s

]
ds

∣∣∣∣Ft])1−γ

.

Doob’s maximal inequality yields that

E

 sup
0≤t≤T

∣∣∣∣∣ B̃n
t

(T − t)γ

∣∣∣∣∣
2


≤ (κmax)2

4η2
min

E

[
sup

0≤t≤T

(
E
[∫ T

t

E
[
|Ỹ n
s |

1
1−γ

∣∣∣F0
s

]
ds

∣∣∣∣Ft])2(1−γ)
]

≤ CE
[∫ T

0

|Ỹ n
t |2 dt

]
.

Hence,

‖B̃n‖n,γ ≤C
(
E
[∫ T

0

|Ỹ n
t |2 dt

]) 1
2

≤CR

and
‖X̃n‖n,α ≤CR.
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Step 3. Since d is independent of p, by iteration for only finitely many times, we have the
solution for (38) with p= 1 and f = 0 with the uniform estimate (41). �

Under Assumption 5, the value α appearing in the estimate of Theorem 1 is equal to one. That
is

‖X∗‖1 <∞. (44)

This allows us to prove the convergence of the optimal position and control.

Lemma 8. Let (X,B,Y ) be the solution to the FBSDEs (10) and (17) (Proposition 1). Under
Assumption 1 and Assumption 5,

lim
n→+∞

{
E
[∫ T

0

|Xn
t −Xt|2 dt

]
+E

[∫ T

0

|Bn
t −Bt|2 dt

]
+E

[∫ T

0

|Y n
t −Yt|2 dt

]}
= 0.

Proof. Using the same arguments as in the proof of Lemma 3, we have for each ε > 0

E
[∫ T−ε

0

|Y n
t −Yt|2 dt

]
+E

[∫ T−ε

0

|Xn
t −Xt|2 dt

]
≤ CE

[
|(Bn

T−ε−BT−ε)(Xn
T−ε−XT−ε)|

]
+CE

[
|(AnT−ε−AT−ε)XT−ε(X

n
T−ε−XT−ε)|

]
.

(45)

The two terms in the above summation admit the following estimates

E[|(Bn
T−ε−BT−ε)(Xn

T−ε−XT−ε)|]
≤ CE[|Bn

T−ε|2] +CE[|BT−ε|2] +CE[|Xn
T−ε|2] +CE[|XT−ε|2]

≤ C

(
ε+

1

n

)2γ

‖Bn‖2n,γ +C

(
ε+

1

n

)2

‖Xn‖2n,α +Cε2γ‖B‖2γ +Cε2‖X‖21,

respectively,

E[|(AnT−ε−AT−ε)XT−ε(X
n
T−ε−XT−ε)|]

≤ CE

[
sup

0≤t≤T

∣∣∣∣ Xt

T − t

∣∣∣∣
(

sup
0≤t≤T

|Xn
t |(

T − t+ ηmin
n

)α
)(

ε+
1

n

)α
+ ε sup

0≤t≤T

|Xt|
T − t

]
(by Lemma 9 and Lemma 10)

≤ C

[(
ε+

1

n

)α
+ ε

]
(‖Xn‖2n,α + ‖X‖21)

≤ C

[(
ε+

1

n

)α
+ ε

]
(by Lemma 7 and (44)).

Letting ε go to zero in (45), by Theorem 1 and Lemma 7 we get

E
[∫ T

0

|Y n
t −Yt|2 dt

]
+E

[∫ T

0

|Xn
t −Xt|2 dt

]
≤C

(
1

n

)2γ

+C

(
1

n

)2

+
C

nα
.

Hence we obtain the desired limit for (Y n−Y ) and (Xn−X). By the expression for B, we have

|Bn
t −Bt| ≤ E

[∫ T

t

e−
∫ s
t
Anr
2ηt

drκsE
[
|Y n
s −Ys|
2ηs

∣∣∣∣F0
s

]
ds

∣∣∣∣Ft]
+E

[∫ T

t

∣∣∣∣1− e−∫ s
t

(Ar−Anr )
2ηt

dr

∣∣∣∣κsE[ |Ys|2ηs

∣∣∣∣F0
s

]
ds

∣∣∣∣Ft] .
Let us recall that {An} is a non-decreasing sequence converging to A. This leads to

E
[∫ T

0

|Bn
t −Bt|2 dt

]
→ 0.

�
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Let us denote by V n(X ;µn) the value function associated with the penalized problem (37). The
next theorem shows the convergence of V n(X ;µn) := V n(X ) to the value function V (X ;µ∗) := V (X )
associated with the constrained MFG.

Theorem 5. Under Assumption 1 and Assumption 5, the value function V n(X ) converges to
V (X ) in L1(Ω).

Proof. Let (Xn, Y n,Bn) be the solution in Theorem 4. Recall that ξn,∗ = Y n

2η
is the optimal strat-

egy for the penalized problem with degree n and the related optimal process Xn,∗ is equal to Xn.

Thus, with
(
µn,∗ =E

[
Y nt
2ηt

∣∣∣F0
t

])
0≤t≤T

fixed, the optimal strategy ξ∗ for the constraint optimization

is an admissible control for the penalized optimization. We denote by X∗ =X the optimal state
process related to ξ∗ (Proposition 2 and Equation (21)). Let us define

∆n =E

[∫ T

0

κsE
(
Ys−Y n

s

2ηs

∣∣∣∣F0
s

)
X∗s ds

∣∣∣∣∣X
]
.

From Lemma 8, lim
n→+∞

E(|∆n|) = 0. Recalling that

J(X , ξn,∗;µn,∗) =E

[∫ T

0

(
κsµ

n,∗Xn,∗
s + ηs(ξ

n,∗
s )2 +λs(X

n,∗
s )2

)
ds

∣∣∣∣∣X
]
,

we have

V (X ) = E

[∫ T

0

κsµ
∗X∗s + ηs(ξ

∗
s )

2 +λs(X
∗
s )2 ds

∣∣∣∣∣X
]

= E

[∫ T

0

κsµ
n,∗X∗s + ηs(ξ

∗
s )

2 +λs(X
∗
s )2 ds

∣∣∣∣∣X
]

+ ∆n

≥ E

[∫ T

0

(
κsµ

n,∗Xn,∗
s + ηs(ξ

n,∗
s )2 +λs(X

n,∗
s )2

)
ds+n(Xn,∗

T )2

∣∣∣∣∣X
]

+ ∆n

= V n(X ) + ∆n ≥ J(X , ξn,∗;µn,∗) + ∆n.

Hence we deduce that

V (X )−J(X , ξn,∗;µn,∗)≥ V (X )−Vn(X )≥∆n,

thus

|V (X )−Vn(X )| ≤ |∆n|+ |V (X )−J(X , ξn,∗;µn,∗)|.

Again by Lemma 8,

lim
n→+∞

E|V (X )−J(X , ξn,∗;µn,∗)|= 0.

�
Remark 4. As a by-product of the proof, we get that lim

n→+∞
E
[
n(Xn,∗

T )2
]

= 0. Moreover

|Xn,∗
T | ≤

C

n

(
|X |+ sup

0≤t≤T

|Bn
t |(

T − t+ ηmin
n

)γ
)
→ 0 a.s..
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The proof of convergence of the value function simplifies substantially under the common infor-
mation assumption (Subsection 2.2.1). In particular, Assumption 5 is not necessary here. In this
case, Y n =AnXn where

−dAnt =

(
2λt +

κtA
n
t

2ηt
− (Ant )2

2ηt

)
dt−ZA

n

t dW 0
t , AnT = 2n

and

dXn
t =−A

n
tX

n
t

2ηt
dt, X0 = x∈R

The optimal strategy and the resulting portfolio process are given by, respectively,

ξn,∗t = µn,∗t =
AntX

n
t

2ηt
, Xn,∗

t =Xn
t = xe−

∫ t
0
Anr
2ηr

dr t∈ [0, T ].

Since the sequence An is non-decreasing and converges to A, we deduce that Xn,∗ converges to
X∗ a.s. and that ξn,∗ converges to ξ∗ a.e. a.s.. Moreover, for fixed µn,∗, ξ∗ is suboptimal to the
penalized optimization. This implies that

E
[∫ T

0

(
κsξ
∗
sX
∗
s + ηs(ξ

∗
s )

2 +λs(X
∗
s )2
)
ds

]
= E

[∫ T

0

(
κsξ

n,∗
s X∗s + ηs(ξ

∗
s )

2 +λs(X
∗
s )2
)
ds

]
+E

[∫ T

0

κsX
∗
s (ξ∗s − ξn,∗s )ds

]
≥ E

[∫ T

0

(
κsξ

n,∗
s Xn,∗

s + ηs(ξ
n,∗
s )2 +λs(X

n,∗
s )2

)
ds+n(Xn,∗

T )2

]
+E

[∫ T

0

κsX
∗
s (ξ∗s − ξn,∗s )ds

]
≥ E

[∫ T

0

(
κsξ

n,∗
s Xn,∗

s + ηs(ξ
n,∗
s )2 +λs(X

n,∗
s )2

)
ds

]
+E

[∫ T

0

κsX
∗
s (ξ∗s − ξn,∗s )ds

]
.

For any ε > 0, it holds

lim
n→+∞

E
[∫ T−ε

0

(
κsξ

n,∗
s Xn,∗

s + ηs(ξ
n,∗
s )2 +λs(X

n,∗
s )2

)
ds

]
= E

[∫ T−ε

0

(
κsξ
∗
sX
∗
s + ηs(ξ

∗
s )

2 +λs(X
∗
s )2
)
ds

]
.

Hence, the monotone convergence theorem implies

lim
n→∞

E
[∫ T

0

(
κsξ

n,∗
s Xn,∗

s + ηs(ξ
n,∗
s )2 +λs(X

n,∗
s )2

)
ds+n(Xn,∗

T )2

]
≥ E

[∫ T

0

(
κsξ
∗
sX
∗
s + ηs(ξ

∗
s )

2 +λs(X
∗
s )2
)
ds

]
.

(46)

Moreover,
|κsX∗s (ξ∗s − ξn,∗s )| ≤ κmax|x||ξ∗s − ξn,∗s |,

which is L2 bounded uniformly in n, due to Lemma 7. Vitali convergence implies

lim
n→∞

E
[∫ T

0

κsX
∗
s (ξ∗s − ξn,∗s )ds

]
= 0. (47)

The convergence (46) and (47) yields the desired result.

Appendix

In this appendix we recall an existence of solutions result for a stochastic Riccati equation with
singular terminal condition and prove Lemma 6. We assume throughout that λ, η and 1/η are
bounded.
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A. Stochastic Riccati equations with singular terminal value

Lemma 9. [3, Theorem 2.2][28, Theorem 6.1, Theorem 6.3] In S2
F([0, T−]×Ω;R)×L2

F([0, T−]×
Ω;Rm) there exists a unique solution to−dAt =

(
2λt−

A2
t

2ηt

)
dt−ZAt dWt,

AT = ∞.

Moreover, there holds the following estimate

1

E
[∫ T

t
1

2ηs
ds
∣∣∣Ft] ≤At ≤ 1

(T − t)2
E
[∫ T

t

2ηs + 2(T − s)2λs ds

∣∣∣∣Ft] . (48)

Corollary 1. The BSDE (26)−dAt =

(
2λt +

κtAt
2ηt
− A2

t

2ηt

)
dt−ZAt dW 0

t ,

AT = ∞.

has a unique solution.

Proof. Let Ãt =Ate
∫ t
0
κs
2ηs

ds. Then,−dÃt =

[
2λte

∫ t
0
κs
2ηs

ds− Ã2
t

2ηte
∫ t
0
κs
2ηs

ds

]
dt− Z̃t dW 0

t ,

ÃT =∞.
(49)

Hence, the assertion follows from the preceding lemma. �

Lemma 10. For each n, there exists a unique solution An to the BSDE−dAnt =

(
2λt−

(Ant )2

2ηt

)
dt−ZA

n

t dWt,

AnT = 2n.
(50)

Ant ≥
1

1
2n

+E
[∫ T

t
1

2ηs
ds
∣∣∣Ft] .

Moreover, the sequence An is non-decreasing and converges to A. There exists a constant C such
that for any n:

‖An‖M−1
+ ‖An‖Mn

−1
≤ C.

Proof. The first and second assertions are results of [3, Proposition 3.1,Theorem 3.2], respectively.
For any t, n and a, we have

2λt−
a2

2ηt
≤ 2λt−

2(
T − t+ ηmin

n

)a+
2ηt(

T − t+ ηmin
n

)2 = g(t, a).

Let us denote by Ψn the solution of the BSDE with generator g and terminal condition 2n. By the
comparison principle for BSDEs, we have Ant ≤Ψn

t and by the solution formula for linear BSDEs,

Ψn
t =

(
T + ηmin

n

T − t+ ηmin
n

)2

E

[( ηmin
n

T + ηmin
n

)2

2n+

∫ T

t

(
T − s+ ηmin

n

T + ηmin
n

)2
(

2ηs(
T − s+ ηmin

n

)2 + 2λs

)∣∣∣∣∣Ft
]

=
2η2

min

n

1(
T − t+ ηmin

n

)2 +
1(

T − t+ ηmin
n

)2E
[∫ T

t

(
2ηs + 2

(
T − s+

ηmin

n

)2

λs

)∣∣∣∣Ft] .
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Hence (
T − t+

ηmin

n

)
Ψn
t

≤ 2η2
min

ηmin +n(T − t)
+

1(
T − t+ ηmin

n

)E[∫ T

t

(
2ηs + 2

(
T − s+

ηmin

n

)2

λs

)∣∣∣∣Ft]
≤ 2ηmin +

1

T − t
E
[∫ T

t

(
2ηs + 2

(
T − s+

ηmin

n

)2

λs

)∣∣∣∣Ft]= C.

Thus
(
T − t+ ηmin

n

)
Ant ≤ C, that is ‖An‖Mn

−1
≤ C. �

B. On Assumption 5 Assumption 5 states that there exists a constant C such that a.s. for
any 0≤ r≤ s < T

exp

(
−
∫ s

r

Au
2ηu

du

)
≤C

(
T − s
T − r

)
.

The left-hand side is equal to the optimal state process χ of the control problem studied in [3, 28]
with initial value equal to 1 at time r. In particular from the proof of [3, Theorem 4.2], the process
M defined on [r,T ) by

Ms =
1

Ar

[
Asχs + 2

∫ s

r

λuχudu

]
is a non-negative local martingale with Mr = 1. Hence for any s∈ [r,T )

exp

(
−
∫ s

r

Au
2ηu

du

)
= χs ≤

Ar
As
Ms ≤

ηmax +Tλmax

ηmin

(
T − s
T − r

)
Ms =C

(
T − s
T − r

)
Ms.

Since M is also a non-negative supermartingale Mt converges almost surely as t goes to T and the
limit MT satisfies E(MT )≤ 1. Therefore Assumption 5 does not strike us as overly restrictive.
Proof of Lemma 6. From (48)

− Au
2ηu
≤− 1

E
[∫ T

u
ηu
ηs
ds
∣∣∣Fu] =− 1∫ T

u
E
[
ηu
ηs

∣∣∣Fu] ds.
By the very definition of uncorrelated multiplicative increments for 1/η and from [3, Lemma 5.1]

− Au
2ηu
≤− 1∫ T

u
E
[
ηu
ηs

]
ds

=− 1∫ T
u

E[1/ηs]

E[1/ηu]
ds

=− E [1/ηu]∫ T
u
E [1/ηs] ds

=
1

Nu

dNu

with Nu :=
∫ T
u
E [1/ηs] ds. Hence

exp

(
−
∫ s

r

Au
2ηu

du

)
= exp

(∫ s

r

1

Nu

dNu

)
=
Ns

Nr

=

∫ T
s
E [1/ηv] dv∫ T

r
E [1/ηv] dv

≤ ηmax

ηmin

(
T − s
T − r

)
.

If 1/η is a positive martingale, then again from [3, Lemma 5.1], we get that 1/η has uncorrelated
multiplicative increments. If η is deterministic, we have directly that

− Au
2ηu
≤− 1

ηu
∫ T
u

1
ηs
ds

=
1

Nu

dNu

du
.

�
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