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Abstract: In this article the problem of optimal trading in illiquid markets is addressed
when the deviations from a given stochastic target function describing, for instance, ex-
ternal aggregate client flow are penalised. Using techniques of singular stochastic control,
we extend the results of [NW11] to a two-sided limit order market with temporary market
impact and resilience, where the bid ask spread is now also controlled. In addition to using
market orders, the trader can also submit orders to a dark pool. We first show existence
and uniqueness of an optimal control. In a second step, a suitable version of the stochas-
tic maximum principle is derived which yields a characterisation of the optimal trading
strategy in terms of a nonstandard coupled FBSDE. We show that the optimal control
can be characterised via buy, sell and no-trade regions. The new feature is that we now
get a nondegenerate no-trade region, which implies that market orders are only used when
the spread is small. This allows to describe precisely when it is optimal to cross the bid
ask spread, which is a fundamental problem of algorithmic trading. We also show that the
controlled system can be described in terms of a reflected BSDE. As an application, we
solve the portfolio liquidation problem with passive orders.
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1. Introduction

In modern financial institutions, due to external regulations, risk management requirements or
client preferences, there are often imposed trading targets that need to be followed. These can
take the form of a curve giving the desired stock holdings over a given period of time as a func-
tion of stochastic market factors. Typical examples include portfolio liquidation with random
external client flow and ∆-hedging under market impact. In an idealised setting the trader would
simply stay on the target (such as the aggregate exogenous client flow or the Black-Scholes ∆).
Preventing this are often associated transaction costs and limited availability of liquidity, thus
the trader needs to balance the two conflicting objectives of staying close to the target and
minimizing trading costs.

In [NW11] the problem of curve following in an order book model with instantaneous price im-
pact and absolutely continuous market orders is solved. In particular it is assumed that trades
have no lasting impact on future prices. However in limit order markets the best bid and best
ask prices typically recover only slowly after large discrete trades. In the present work we extend
their results to a two-sided limit order market model with temporary market impact and re-
silience, where the price impact of trading decays only gradually. Trading strategies now include
infinitesimally small (“continuous”) as well as block (“discrete”) trades, so that we are in the
framework of singular stochastic control. The singular nature of the market order complicates
the analysis. The optimal market order cannot be characterised as the pointwise maximiser of
the Hamiltonian as in the absolutely continuous case. Moreover, we now face an optimisation
problem with constraints, since passive buy and sell orders are modelled separately and both
are nonnegative.

∗A previous version of this paper circulated under the title: When to Cross the Spread - Curve Following with
Singular Control

1



U. Horst, N. Naujokat/When to Cross the Spread? 2

Methods of singular control have been applied in different fields including the monotone follower
problem as in [BSW80], the consumption-investment problem with proportional transaction
costs in [DN90] and finite fuel problems as in [KOWZ00]. Most of them rely on the dynamic
programming approach or a martingale optimality principle. We shall prove a version of the
stochastic maximum principle. In contrast to dynamic programming, this does not require regu-
larity of the value function and provides information on the optimal control directly. Maximum
principles for singular stochastic control problems can be found in [CH94], [ØS01] and [BM05],
among others. These results cannot directly be applied to the optimisation problem under con-
sideration, since it involves jumps and state dependent singular cost terms. The recent paper
[ØS10] provides necessary and sufficient maximum principles for jump diffusions with partial
information. Despite being fairly general, their setup does not cover the particular model we
consider; instead we give a direct proof based on [CH94] and the ideas developped in [NW11].

We consider an investor who wants to minimise the deviation of his stock holdings from a pre-
specified target function, which is driven by a vector of uncontrolled stochastic signals. The
applications we have in mind are index tracking, portfolio liquidation, hedging and inventory
management in the presence of external client flow. Our problem can be seen as an extension of
the monotone follower problem to an order book framework with market and passive orders. In
our model, the investor can use market orders and simultaneously place passive orders. We think
of the passive orders as orders submitted to a dark pool. They generally incur lower trading costs
that market orders but their execution is uncertain. The trader thus faces a tradeoff between
the penalty for deviating from the target function, the costs of market order submission and
the use of passive orders with uncertain execution times. The investor’s market orders widen
the spread temporarily; the gap then attracts new limit orders from other market participants
and the spread recovers. The key decision the trader has to take is the following: If the spread
is small, trading is cheap and a market order might be beneficial. For large spreads however it
might be better to stop trading and wait until the spread recovers. When to cross the spread
is a fundamental question of algorithmic trading in limit order markets. An equivalent question
would be when to convert a limit into a market order. To the best of our knowledge, the problem
of when to cross the bid ask spread has not been addressed in the mathematical finance liter-
ature on limit order markets. [OW05] and [PSS10], for instance, consider portfolio liquidation
for a one-sided order book with initial spread zero and without passive orders; in this case it is
optimal never to stop trading.

Our order book model is inspired by [OW05], a model which has recently been generalised to
arbitrary shape functions by [AFS10] as well as [PSS10] and stochastic order book height in
[Fru11]. While the mentioned articles focus on portfolio liquidation, we consider here the more
general problem of curve following and therefore need a two-sided order book model. In addi-
tion, we allow for passive orders. These are orders with random execution which do not induce
liquidity costs, such as limit orders or orders placed in a dark venue.

Our first mathematical result is an a priori estimate on the control. For the proof, we reduce the
curve following problem to an optimisation problem with quadratic penalty and without target
function and then use a scaling argument. This result provides the existence and uniqueness of
an optimal control via a Komlós argument. Next we prove a suitable version of the stochastic
maximum principle and characterise the optimal trading strategy in terms of a coupled forward
backward stochastic differential equation (FBSDE).1 The proof builds on results from [CH94]
and extends them to the present case where we have jumps, state-dependent singular cost terms
and general dynamics for the stochastic signal. Next we give a second characterisation of op-
timality in terms of buy, sell and no-trade regions. It turns out that there is always a region
where the costs of trading are larger than the penalty for deviating, so that it is optimal to stop
trading when the controlled system is inside this region. This is in contrast to [NW11], where
only absolutely continuous trading strategies are allowed and a smoothness condition on the
cost function is imposed. It was shown therein that under these conditions the no-trade region

1 Unlike the classical HJB approach, our proof of existence does not need smoothness of the value func-
tion. Moreover, Pontryagins maximum principle provides a more explicit characterisation of the optimal trading
strategies than the more traditional dynamic programming approach.
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is degenerate, so that the investor always trades. In the present model the no-trade region is
defined in terms of a threshold for the bid ask spread. We show that spread crossing is optimal
if the spread is smaller than or equal to the threshold. If it is larger, then no market orders
should be used. The threshold is given semi-explicitly in terms of the FBSDE and as a result,
we can precisely characterise when spread crossing is optimal for a large class of optimisation
problems. We will see that market orders are applied such that the controlled system remains
inside (the closure of) the no-trade region at all times, and that its trajectory is reflected at
the boundary. To make this precise, we show that the adjoint process together with the optimal
control provides the solution to a reflected BSDE.

In general it is difficult to solve the coupled forward backward SDE (or the corresponding
Hamilton-Jacobi-Bellman quasi variational inequality) explicitly. This is due to the Poisson
jumps (leading to nonlocal terms) and the singular nature of the control. For quadratic penalty
function and zero target function though the solution can be given in closed form. This cor-
responds to the portfolio liquidation problem in limit order markets and extends the result of
[OW05] to trading strategies with passive orders. The new feature is that the optimal strategy is
not deterministic, but adapted to passive order execution, and the trading rate is not constant
but increasing in time.

The remainder of this paper is organised as follows: We describe the market environment and
the control problem in Section 2 and show in Section 3 that a unique optimal control exists. We
then provide two characterisations of optimality, first via the stochastic maximum principle in
Section 4 and then via buy, sell and no-trade regions in Section 5. The link to reflected BSDEs
is presented in Section 6, and we discuss the application to portfolio liquidation in Section 7.

2. The Model

Let (Ω,F , {F(s) : s ∈ [0, T ]},P
)

be a filtered probability space satisfying the usual conditions
of right continuity and completeness and T > 0 be the terminal time.

Assumption 2.1. The filtration is generated by the following jointly independent processes,

(i) A d-dimensional Brownian Motion W , d ≥ 1.
(ii) Two one-dimensional Poisson processes Ni with respective intensities λi for i = 1, 2.

(iii) A compound Poisson process M on [0, T ]×Rk with compensator m(dθ)ds, s.t. m(Rk) <∞.

The compensated (compound) Poisson processes are denoted Ñi for i = 1, 2 and M̃ , respctively.

In our model trading takes place in a two sided limit order market. There are three price
processes: a benchmark price process (D(s))t≤s≤T which we assume to be a martingale, the
best ask price process which is above the benchmark, the best bid price process which is always
below the benchmark. On the buy side of the order book liquidity is available for prices higher
than the best ask price, and we assume a block shaped distribution of available liquidity with
constant height 1

κ1
> 0. This assumption is also made in [OW05]; it is key for the current

approach as it leads to linear dynamics for the bid ask spread. Similarly, liquidity is available
on the sell side for prices lower than the best bid. We assume a block shaped distribution of
liquidity available on the sell side with constant height 1

κ2
> 0. The investor’s trades will have

a temporary impact2 on the best bid and ask prices. The benchmark price is hypothetical and
cannot be observed directly in the market. It represents the “fair” price of the underlying or
a reference price in the absence of liquidity costs such as the mid-quote. We assume that the
benchmark price is uncontrolled. A stylised snapshot of the order book and a typical trajectory
of the price processes are plotted in Figure 1.

2A fundamental property of illiquid markets is that trades move prices. There is a large body of empirical
literature on the price impact of trading, we refer the reader to [KS72], [HLM87], [HLM90], [BHS95] and [ATHL05].
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Fig 1. (a) This stylised snapshot of the order book shows the best bid, benchmark and best ask price as
well as liquidity that is available (dark) and consumed (light). (b) Here we see a typical evolution of the
price processes over time. The best ask (red) is above the benchmark price (dashed black), which is above
the best bid price (blue). Market buy (resp. sell) orders lead to jumps in the best ask (resp. bid) price.
In the absence of trading, the best ask and best bid converge to the benchmark.

2.1. Trading strategies

The investor can apply market buy (sell) orders to consume liquidity on the buy (sell) side of
the order book. His cumulated market buy (sell) orders are denoted by η1 (resp. η2). These are
nondecreasing càdlàg processes, and hence we allow for continuous as well as discrete trades and
denote by

∆ηi(s) , ηi(s)− ηi(s−) ≥ 0

for s ∈ [0, T ] and i = 1, 2 the jumps of ηi. Such control processes are more general than
absolutely continuous trading strategies and they seem better suited to describe real world
trading strategies, which are purely discrete. In addition, the investor can use passive buy (sell)
order volumes u1 (resp. u2). We assume that passive orders are fully executed at the benchmark
price at random points in time. Thus a passive order always achieves a better price than the
corresponding market order, however its execution is uncertain. We think of them as orders
placed in a dark pool.

The class of admissible controls is now defined for t ∈ [0, T ] as

Ut ,
{

(η, u) : [t, T ]× Ω→ R2
+ × R2

+

∣∣∣∣ ηi(t−) = 0, E
[
ηi(T )2 +

∫ T

t

ui(r)
2dr

]
<∞,

ηi is nondecreasing, càdlàg and progressively measurable and

ui is predictably measurable, for i = 1, 2

}
.

Each control consists of the four components η1, η2, u1, u2, each of them being nonnegative. In
particular, we face an optimisation problem with constraints. We note that η1(s) (resp. η2(s))
denotes the market buy (resp. sell) orders accumulated in [t, s]. In contrast, u1(s) (resp. u2(s))
represents the volume placed as a passive buy (resp. sell) order at time s ∈ [t, T ].

2.2. Trading costs

In our model there will be three sources of trading costs associated with the use market orders,
passive order placements, and the deviation of the investor’s stock holding from some pre-
described target function as specified below.
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2.2.1. Market orders

Instead of modelling the best bid and best ask price directly, we find it more convenient to work
with the buy and sell spreads instead. Specifically, we denote by X1 the distance of the best ask
price to the benchmark price and call this process the buy spread. As in [OW05] and [AFS10] we
assume exponential recovery of the buy spread with resilience parameter ρ1 > 0. The dynamics
of the buy spread are then given for s ∈ [t, T ] by

X1(s)−X1(t−) = −
∫ s

t

ρ1X1(r)dr +

∫
[t,s]

κ1dη1(r), X1(t−) = x1 ≥ 0.

As a convention, we write
∫

[t,s]
for integrals with respect to the singular processes ηi for i = 1, 2

to indicate that possible jumps at times s and t are included. Similarly, the sell spread X2 is
defined as the distance of the best bid price to the benchmark price and it satisfies

X2(s)−X2(t−) = −
∫ s

t

ρ2X2(r)dr +

∫
[t,s]

κ2dη2(r), X2(t−) = x2 ≥ 0.

An immediate consequence is that the spreads X1 and X2 are nonnegative and revert to their
lower bound 0. As a consequence, the best ask price is larger than or equal to the best bid price.
In our model, the investor’s market buy orders have a temporary impact on the best ask price,
but not on the best bid (and vice versa). Passive orders do not move prices. Moreover, the price
impact of trading decays over time (resilience) and in the absence of trading the price processes
converge to the benchmark price.

Remark 2.2. • In the literature the bid ask spread is defined as the distance of the best
ask from the best bid price; in our notation this process is given by X1 +X2.

• In the seminal paper [Kyl85] three measures of liquidity are defined, all of which are
captured in the model we propose. Depth, “the size of an order flow innovation required
to change prices a given amount”, is given by the parameters κ1 and κ2 which denote the
inverse order book height. Resiliency, “the speed with which prices recover from a random,
uninformative shock”, is captured by the resilience parameters ρ1 and ρ2. Finally, tightness,
“the cost of turning around a position over a short period of time”, can be measured in
terms of the bid ask spread X1 +X2.

The costs of market order execution is measured relative to the benchmark price, so the specific
nature of the benchmark price process (D(s))s∈[0,T ] is not important at this point. An infinites-
imal market buy order dη1(r) is executed at the best ask price; the costs of crossing the spread
are X1(r−)dη1(r). A discrete buy order ∆η1(r) “eats” into the block shaped order book and
shifts the spread from X1(r−) to X1(r−) + κ1∆η1(r). Its liquidity costs are therefore given by(

X1(r−) +
κ1

2
∆η1(r)

)
∆η1(r).

Altogether, we arrive at the following cost functional for market order execution.

Definition 2.3. The expected trading costs from using market orders is

Et,x
[ ∫

[t,T ]

[
X1(r−) +

κ1

2
∆η1(r)

]
dη1(r) +

∫
[t,T ]

[
X2(r−) +

κ2

2
∆η2(r)

]
dη2(r), (2.1)

where the jump part is understood as, for i = 1, 2

E
[ ∫

[t,T ]

∆ηi(r)dηi(r)

]
= E

[ ∑
r∈[t,T ]

(∆ηi(r))
2

]

≤ E
[( ∑

r∈[t,T ]

∆ηi(r)

)2]
≤ E

[
ηi(T )2

]
<∞.
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2.2.2. Passive orders

A jump of the Poisson process Ni represents a liquidity event which executes the passive order
ui, for i = 1, 2. For simplicity we consider full execution only, i.e. only “fill-or-kill” orders are
admissible. This assumption is also made in [Kra11] and in [NW11].3 As a result, the investor’s
stock holdings at time s ∈ [s, T ] are given by

X3(s)−X3(t−) =

∫
[t,s]

dη1(r)−
∫

[t,s]

dη2(r) +

∫ s

t

u1(r)N1(dr)−
∫ s

t

u2(r)N2(dr),

X3(t−) = x3 ∈ R.

Passive orders are executed at the benchmark price and hence do not incur direct trading costs.
However, we allow for adverse selection costs. Such costs are commonly observed in practice.
They occur if the benchmark price moves in a favorable direction after the passive order is
executed, making the execution look less beneficial in hindsight.4 We postulate the following
adverse selection cost structure.

Definition 2.4. Let γi ≥ 0 for i = 1, 2. The expected adverse selection costs from trading
passive buy/sell orders are

E
[ ∫ T

0

γiui(r)dr

]
(2.2)

A linear penalization of passive orders of the above form has previously been used by [Kra11].
Therein the performance functional in continuous time is not derived from first principles, but
taken as the continuous-time analogue of the discrete-time case. The following example illustrates
how such a linear cost term can indeed be derived from first principles.

Example 2.5. Let us assume that every time the passive buy (resp. sell) order is executed, the
benchmark prices jumps down (resp. up). The upward and downward jumps can modelled by
compound Poisson processes Mi for i = 1, 2 whose jump times agree5 with the jump times of the
Poisson processes Ni. Denote the compensated Poisson martingales by

M̃i([0, s]×A) ,Mi([0, s]×A)− λimi(A)s.

Let the benchmark price with adverse selection costs be given by

D̄(s) , D(s)− M̃1(s) + M̃2(s).

The process D̄ is then also a martingale which jumps down (up) if our passive buy (sell) order
is executed. The key observation is that the passive buy order is executed before the jump of the
benchmark price, and thus the passive buy orders incur the following costs:

E
[∑
j≥1

ui(τi,j)D̄(τi,j−)

]
,

where τi,j denotes the j-th jump of Mi for i = 1, 2 and j ∈ N. We note that D̄(τi,j) = D̄(τi,j−)−
∆Mi(τi,j), so the above equals

E
[ ∑
j≥1;τi,j≤T

ui(τi,j)
[
D̄(τi,j) + ∆Mi(τi,j)

]]
= E

[ ∫ T

0

ui(r)
[
D̄(r) + θ

]
Mi(dθ, dr)

]
.

3The assumption of full execution is key to our analysis. While an extension to proportional execution is
straightforward, general partial executions are not covered by our method.

4See for instance [Kra11] for a detailed analysis in the framework of portfolio liquidation.
5In other words, Mi is constructed from Ni by replacing the jumps of size one by a stochastic jump size θ > 0

whose distribution is given by mi(θ), for i = 1, 2.
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It follows that adverse selection leads to an additional loss (relative to the benchmark price D̄)
of size

E
[ ∫ T

0

ui(r)θMi(dθ, dr)

]
.

By [NW11] Lemma A.3, the process
∫ ·
t
ui(r)θM̃i(dθ, dr) is a martingale, so the expected losses

are of the form (2.2) with

γi , λi

∫ ∞
0

θmi(dθ).

2.2.3. Deviations from the target function

The last and final cost term captures costly deviations from some pre-specified target function.
Specifically, we assume that the trader wants to minimise the deviation of his stock holdings to a
target function α : [t, T ]×Rn → R. This function depends on a vector of uncontrolled stochastic
signals Z with dynamics given for s ∈ [t, T ] by

Z(s)− Z(t−) =

∫ s

t

µ(r, Z(r))dr +

∫ s

t

σ(r, Z(r−))dW (r)

+

∫ s

t

∫
Rk
γ(r, Z(r−), θ)M̃(dr, dθ), Z(t−) = z ∈ Rn.

where M̃([0, s]×A) ,M([0, s]×A)−m(A)s denotes the compensated Poisson martingale.

Definition 2.6. The costs of deviating from the target functions are specified in terms of penalty
functions h, f : R→ R . Specifically, the expected cost from curve-following is

Et,x,z
[ ∫ T

t

h (X3(r)− α(r, Z(r))) dr + f (X3(T )− α(T,Z(T )))

]
(2.3)

In a model where Z represents exogenous client flow, the trader’s net position at time s ∈ [t, T ]
is X3(s)−Z(s). In this case one might choose α(r, z) = z and penalize her aggregate holdings by
choosing h(x) = f(x) = x2. Another possible interpretation is that Z is a vector whose entries
represent both client flow and the benchmark price and f (X3(T )− α(T,Z(T )) represents either
the cost of unwinding the terminal position at the market price at time T or the deviation of
the actual stock holding from that of a perfect hedge.6

2.3. The control problem

Having defined the state processes and their respective dynamics, as well as the various costs
of trading, we are now ready to formulate our control problem. The performance functional is
defined for (t, x, z) ∈ [0, T ]× R3 × Rn and a control (η, u) ∈ Ut as

J(t, x, z, η, u)

,Et,x,z
[ ∫

[t,T ]

[
X1(r−) +

κ1

2
∆η1(r)

]
dη1(r) +

∫
[t,T ]

[
X2(r−) +

κ2

2
∆η2(r)

]
dη2(r)

+

∫ T

t

γ1u1(r)dr +

∫ T

t

γ2u2(r)dr

+

∫ T

t

h (X3(r)− α(r, Z(r))) dr + f (X3(T )− α(T,Z(T )))

]
(2.4)

and the optimisation problem under consideration is:

6The problem of optimal hedging under market impact and resilience has been studied in a mean-variance
setting in [AG12] and in a game-theoretic framework in [HN11].
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Problem 2.7.
Minimise J(η, u) over (η, u) ∈ Ut.

For (t, x, z) ∈ [0, T ]× R3 × Rn the value function is defined as

v(t, x, z) = inf
(η,u)∈Ut

J(t, x, z, η, u).

Remark 2.8. Problem 2.7 is a singular stochastic control problem. Maximum principles for
singular control are derived for instance in [CH94], [ØS01] and [BM05]. However, the above
problem is not covered by their results for several reasons. Firstly, it involves jumps. Secondly,
the singular cost terms

∫
[t,T ]

[
Xi(r−) + κi

2 ∆ηi(r)
]
dηi(r) for i = 1, 2 depend on the state variable

and on the jumps of the control, which is not the case in the “usual” formulation. The standard

setup only allows for cost terms of the form
∫ T
t
k(s, ω)dη(s). A third difficulty in the present

model is that the control u (the passive order) does not incur trading costs, so the “standard”
characterisation as the pointwise maximiser of the Hamiltonian does not apply. The recent article
[ØS10] provides necessary and sufficient maximum principles for the singular control of jump
diffusions, where the singular cost term may depend on the state variable. However, they do
not allow for terms like

∫
[t,T ]

∆ηi(r)dηi(r) and their sufficient condition is based on a convexity

condition on the Hamiltonian which is not satisfied in our specific case. Instead we give a direct
proof based on [CH94] and ideas used in [NW11].

To ensure existence and uniqueness of an optimal control, we impose the following assump-
tions. Here and throughout, we write c for a generic constant, which might be different at each
occurrence.

Assumption 2.9. (i) The penalty functions f, h : R → R are strictly convex, continuously
differentiable, nonnegative and normalised in the sense f(0) = h(0) = 0.

(ii) In addition, f and h have at least quadratic growth, i.e. there exists ε > 0 such that
|f(x)|, |h(x)| ≥ ε|x|2 for all x ∈ R.

(iii) The functions µ, σ and γ are Lipschitz continuous, i.e. there exists a constant c such that
for all z, z′ ∈ Rn and s ∈ [t, T ],

‖µ(s, z)− µ(s, z′)‖2Rn + ‖σ(s, z)− σ(s, z′)‖2Rn×d

+

∫
Rk
‖γ(s, z, θ)− γ(s, z′, θ)‖2Rnm(dθ) ≤ c‖z − z′‖2Rn .

In addition, they satisfy

sup
t≤s≤T

[
‖µ(s, 0)‖2Rn + ‖σ(s, 0)‖2Rn×d +

∫
Rk
‖γ(s, 0, θ)‖2Rnm(dθ)

]
<∞.

(iv) The target function α has at most polynomial growth in the variable z uniformly in s, i.e.
there exist constants cα, q > 0 such that for all z ∈ Rn,

sup
t≤s≤T

|α(s, z)| ≤ cα(1 + ‖z‖qRn).

(v) The penalty functions f and h have at most polynomial growth.

Remark 2.10. Let us briefly comment on these assumptions. Taking f and h nonnegative
is reasonable for penalty functions. Normalisation is no loss of generality, this may always be
achieved by a linear shift of f, h and α. Quadratic growth of f and h is only needed in Lemma
3.4 for an a priori L2-norm bound on the control, which is then used for a Komlós argument. The
convexity condition leads naturally to a convex coercive problem which then admits a unique
solution.

Once the existence of an optimal control is established, we need one further assumption. It
guarantees the existence and uniqueness of the adjoint process.

Assumption 2.11. The derivatives f ′ and h′ have at most linear growth, i.e. for all x ∈ R we
have |f ′(x)|+ |h′(x)| ≤ c(1 + |x|).
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3. Existence of a Solution

The aim of the present section is to show that the performance functional is strictly convex and
that it is enough to consider controls with a uniform L2-norm bound. Combining these results
with a Komlós argument, we then prove that there is a unique optimal control.

Henceforth we impose Assumption 2.9. For the proof of existence we also assume that there are
no adverse selection costs, γi = 0 for i = 1, 2. Due to the linear penalization of passive orders
the extension to the general case with adverse selection is straightforward. We begin with some
growth estimates for the state processes. This result extends [NW11] Lemma 4.1 to the singular
control case.

Lemma 3.1. (i) For every p ≥ 2 there exists a constant cp such that for every (t, x, z) ∈
[0, T ]× R3 × Rn we have

Et,x,z
[

sup
t≤s≤T

‖Z(s)‖pRn
]
≤ cp (1 + ‖z‖pRn) .

(ii) There exists a constant cx such that for any (η, u) ∈ Ut we have

Et,x,z
[

sup
t≤s≤T

‖Xη,u(s)‖2R3

]
≤ cx

(
1 + Et,x,z

[
‖η(T )‖2R2

]
+ E

[∫ T

t

‖u(r)‖2R2 dr

])
.

In particular, Xη,u has square integrable supremum for all (η, u) ∈ Ut.

Proof. The argument is as in [NW11] Lemma 4.1.

A first consequence of the above lemma is that the zero control incurs finite costs.

Corollary 3.2. The zero control incurs finite costs, i.e. for each (t, x, z) ∈ [0, T ]×R3 ×Rn we
have

J(t, x, z, 0, 0) <∞.

Proof. This result is a consequence of the polynomial growth of f, h and α together with Lemma
3.1.

We now show that the performance functional is strictly convex in the control, so that methods
of convex analysis can be applied.

Proposition 3.3. The performance functional (η, u) 7→ J(t, x, z, η, u) is strictly convex, for
every (t, x, z) ∈ [0, T ]× R3 × Rn.

Proof. From the definition of Xi for i = 1, 2 we have dηi(s) = dXi(s)+ρiXi(s)ds
κi

. We use this to
rewrite the performance functional as

J(t, x, z, η, u)

=Et,x,z
[
X1(T )2 − x2

1

2κ1
+
X2(T )2 − x2

2

2κ2
+

∫ T

t

ρ1

κ1
X1(r)2dr +

∫ T

t

ρ2

κ2
X2(r)2dr

+

∫ T

t

h (X3(r)− α(r, Z(r))) dr + f (X3(T )− α(T,Z(T )))

]
. (3.1)

The right hand side is strictly convex in X. Due to the fact that (η, u) 7→ Xη,u is affine, it follows
that (η, u) 7→ J(t, x, z, η, u) is strictly convex.

The aim in this section is to prove existence and uniqueness of an optimal control. For the proof
of this result, we need two auxiliary lemmata. We first show a quadratic growth estimate on the
value function in Lemma 3.4. This extends Lemma 4.2 from [NW11] to the singular control case.

Lemma 3.4. There are constants c1,t, c2, c3 > 0 such that for (t, x, z) ∈ [0, T ]× R3 × Rn

v(t, x, z) ≥ c1,tx2
3 − c2 (1 + ‖z‖c3Rn) .
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Proof. The idea is to use the growth conditions on the penalty functions to reduce the optimisa-
tion problem to simpler linear-quadratic problem, which can then be estimated in terms of x2

3.
Using the quadratic growth of f and h yields

v(t, x, z)

≥ inf
(η,u)∈Ut

Et,x,z
[ ∫

[t,T ]

[
X1(r−) +

κ1

2
∆η1(r)

]
dη1(r) +

∫
[t,T ]

[
X2(r−) +

κ2

2
∆η2(r)

]
dη2(r)

+

∫ T

t

ε (X3(r)− α(r, Z(r)))
2
dr + ε (X3(T )− α(T,Z(T )))

2

]
.

Next an application of the inequality (a− b)2 ≥ 1
2a

2 − b2 leads to

v(t, x, z)

≥ inf
(η,u)∈Ut

Et,x,z
[ ∫

[t,T ]

[
X1(r−) +

κ1

2
∆η1(r)

]
dη1(r) +

∫
[t,T ]

[
X2(r−) +

κ2

2
∆η2(r)

]
dη2(r)

+

∫ T

t

ε

2
|X3(r)|2 dr +

ε

2
|X3(T )|2

]
− εEt,x,z

[∫ T

t

|α(r, Z(r))|2 dr + |α(T,Z(T ))|2
]
.

The polynomial growth of α coupled with Lemma 3.1 provides the existence of constants c2, c3 >
0 such that

v(t, x, z) (3.2)

≥ inf
(η,u)∈Ut

Et,x,z
[ ∫

[t,T ]

[
X1(r−) +

κ1

2
∆η1(r)

]
dη1(r) +

∫
[t,T ]

[
X2(r−) +

κ2

2
∆η2(r)

]
dη2(r)

+

∫ T

t

ε

2
|X3(r)|2 dr +

ε

2
|X3(T )|2

]
− c2 (1 + ‖z‖c3Rn) .

This provides an estimate of the original value function in terms of an easier optimisation
problem with a quadratic penalty function and zero target function. Economically, this may be
interpreted as a portfolio liquidation problem. To continue the estimate, we define the following
“value” function,

v1(t, x)

, inf
(η,u)∈Ut

Et,x
[ ∫

[t,T ]

[
X1(r−) +

κ1

2
∆η1(r)

]
dη1(r) +

∫
[t,T ]

[
X2(r−) +

κ2

2
∆η2(r)

]
dη2(r)

+

∫ T

t

ε

2
|X3(r)|2 dr +

ε

2
|X3(T )|2

]
.

Monotonicity properties of the value function v1 in the state variable yield

v1(t, x) ≥ v1

(
t, (0, 0, x3)∗

)
, v2(t, x3).

Let us denote by J2 the performance functional associated to the value function v2. Due to xi = 0
for i = 1, 2 the mappings (η, u) 7→ Xη,u

i are linear and the mapping (x3, η, u) 7→ Xη,u
3 − x3 is

also linear. This can be used to show that J2 scales quadratically, i.e. for (t, x3) ∈ [0, T ]×R and
a scaling factor β > 0 we have

J2(t, βx3, βη, βu) = β2J2(t, x3, η, u).

As a result, v2 scales quadratically as well:

v2(t, βx3) = β2v2(t, x3).
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Moreover, if x3 = 0 then v2(t, 0) = 0. Choosing now β = |x3| for x3 6= 0 we get

v2(t, x3) =


x2

3v2(t, 1), x3 > 0

0, x3 = 0

x2
3v2(t,−1), x3 < 0,

and defining c1,t , min{v2(t, 1), v2(t,−1)} leads to

v2(t, x3) ≥ c1,tx2
3.

Plugging this result into (3.2) provides the following estimate

v(t, x, z) ≥ c1,tx2
3 − c2 (1 + ‖z‖c3Rn) .

To prove the assertion of the lemma, it remains to show that the constant c1,t is strictly positive
and finite for each t ∈ [0, T ]. The proof of this result can be found in [Nau11] Lemma A.2.1.

We are now ready to prove an a priori estimate on the control, which will be needed in the
Komlós argument below. This result extends [NW11] Lemma 4.3 to the singular control case.

Lemma 3.5. For each (t, x, z) ∈ [0, T ] × R3 × Rn there is a constant K(t, x, z) such that any
control with

Et,x,z

[
‖η(T )‖2R2 +

∫ T

t

‖u(r)‖2R2 dr

]
> K(t, x, z)

cannot be optimal.

Proof. We first consider the market order η. The dynamics of Xi for i = 1, 2 imply that for
s ∈ [t, T ] we have

Xi(s) = e−ρi(s−t)xi + κi

∫
[t,s]

e−ρi(r−t)dηi(r), (3.3)

and thus Xi(T ) ≥ κie−ρiT ηi(T ). Combining this with (3.1) yields

J(η, u) ≥ Et,x,z
[
Xi(T )2

2κi
− x2

1

2κ1
− x2

2

2κ2

]
≥ K1Et,x,z[ηi(T )2]−K2,x. (3.4)

for constants K1,K2,x > 0. It follows that if Et,x,z[ηi(T )2] >
J(0,0)+K2,x+1

K1
then η cannot be

optimal. We have J(0, 0) <∞ due to Corollary 3.2.
The estimate in terms of the passive order u is slightly more involved. Let τi denote the first
jump time of the Poisson process Ni after t for i = 1, 2, an exponentially distributed random
variable with parameter λi, and set τ , τ1 ∧ τ2 ∧T . At the jump time τ the state process jumps
from X(τ−) to

X(τ−) + ∆NX(τ) , X(τ−) +

 0
0

u1(τ)1{τ1<τ2∧T} − u2(τ)1{τ2<τ1∧T}

 .

We use the definition of the cost functional and the fact that the cost terms are nonnegative to
get

J(η, u) =Et,x,z
[ ∫

[t,τ)

[
X1(r−) +

κ1

2
∆η1(r)

]
dη1(r) +

∫
[t,τ)

[
X2(r−) +

κ2

2
∆η2(r)

]
dη2(r)

+

∫ τ

t

h (X3(r)− α(r, Z(r))) dr + J (τ,X(τ−) + ∆NX(τ), Z(τ), η, u)

]
(3.5)

≥Et,x,z [J(τ,X(τ−) + ∆NX(τ), Z(τ), η, u)]
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≥Et,x,z [v(τ,X(τ−) + ∆NX(τ), Z(τ))] ,

where J in the above is evaluated at controls on the stochastic interval7 [τ, T ]. Combining this
with Lemma 3.4 we get

J(η, u) ≥ Et,x,z
[
c1,t|X3(τ−) + ∆NX3(τ)|2 − c2(1 + ‖Z(τ)‖c3Rn)

]
.

In view of Lemma 3.1 we have

Et,x,z [‖Z(τ)‖c3Rn ] ≤ Et,x,z

[
sup
s∈[t,T ]

‖Z(s)‖c3Rn

]
≤ c (1 + ‖z‖c3Rn) ,

and thus there is a constant c2,z ≥ 0 such that

J(η, u) ≥ −c2,z + c1,tE
[
|X3(τ−) + ∆NX3(τ)|2

]
. (3.6)

By definition, the stock holdings directly after a jump of the Poisson process are given by

X3(τ−) + ∆NX3(τ) = x3 + η1(τ−)− η2(τ−) + u1(τ)1{τ1<τ2∧T} − u2(τ)1{τ2<τ1∧T},

and an application of the inequality (a+ b)2 ≥ 1
2a

2 − b2 leads to

|X3(τ−) + ∆NX3(τ)|2

≥1

2

(
u1(τ1)1{τ1<τ2∧T} − u2(τ2)1{τ2<τ1∧T}

)2 − (x3 + η1(τ−)− η2(τ−))
2

≥1

2

(
u1(τ1)1{τ1<τ2∧T} − u2(τ2)1{τ2<τ1∧T}

)2 − 3
(
|x3|2 + |η1(τ−)|2 + |η2(τ−)|2

)
≥1

2

(
u1(τ1)1{τ1<τ2∧T} − u2(τ2)1{τ2<τ1∧T}

)2 − 3
(
|x3|2 + |η1(T )|2 + |η2(T )|2

)
. (3.7)

Combining (3.6) and (3.7) we get

1

2
c1,tEt,x,z

[(
u1(τ1)1{τ1<τ2∧T} − u2(τ2)1{τ2<τ1∧T}

)2]
≤J(η, u) + c2,z + 3c1,t

(
|x3|2 + Et,x,z

[
|η1(T )|2 + |η2(T )|2

])
.

Due to equation (3.4) we have for i = 1, 2

Et,x,z[|ηi(T )|2] ≤ K2,x

K1
+

1

K1
J(η, u),

so combining the last two displays and relabelling constants provides

Et,x,z
[(
u1(τ1)1{τ1<τ2∧T} − u2(τ2)1{τ2<τ1∧T}

)2] ≤ c1,t,x,z + c2,tJ(η, u). (3.8)

We shall now compute the term on the left hand side of inequality (3.8). The jump times τ1
and τ2 are independent and exponentially distributed with parameter λ1 and λ2, respectively.
We thus have

Et,x,z
[(
u1(τ1)1{τ1<τ2∧T} − u2(τ2)1{τ2<τ1∧T}

)2]
=

∫ ∞
t

∫ ∞
t

λ1e
−λ1(r1−t)λ2e

−λ2(r2−t)
(
u1(r1)1{r1<r2∧T} − u2(r2)1{r2<r1∧T}

)2
dr1dr2

≥
∫ ∞
T

∫ T

t

λ1e
−λ1(r1−t)λ2e

−λ2(r2−t)|u1(r1)|2dr1dr2,

7More precisely, we split the interval [t, T ] into the subintervals [t, τ ] and (τ, T ]. By definition of the cost
functional, the singular order on the second subinterval (τ, T ] includes a possible jump at the left endpoint τ , so
this jump must be excluded from the first subinterval [t, τ ]. For this reason, the state process directly after the
Poisson jump in (3.5) is given by X(τ−) + ∆NX(τ) and not by X(τ−) + ∆NX(τ) + ∆ηX(τ) = X(τ).
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where we have used the nonnegativity of the integrand in the last line and restricted integration
to (r1, r2) ∈ [t, T ]× [T,∞). We now compute

Et,x,z
[(
u1(τ1)1{τ1<τ2∧T} − u2(τ2)1{τ2<τ1∧T}

)2]
≥
∫ ∞
T

λ2e
−λ2(r2−t)dr2

∫ T

t

λ1e
−λ1(r1−t)Et,x,z

[
|u1(r1)|2

]
dr1

=e−λ2(T−t)
∫ T

t

λ1e
−λ1(r1−t)Et,x,z

[
|u1(r1)|2

]
dr1

≥e−λ2(T−t)λ1e
−λ1(T−t)

∫ T

t

Et,x,z
[
|u1(r1)|2

]
dr1.

Combining this with equation (3.8) and relabelling constants we get

Et,x,z

[∫ T

t

|u1(r)|2dr

]
≤ c1,t,x,z + c2,tJ(η, u).

In particular if

Et,x,z

[∫ T

t

|u1(r)|2dr

]
≥ c1,t,x,z + c2,tJ(0, 0) + 1,

then we see that J(η, u) > J(0, 0) and the control (η, u) is clearly not optimal. A similar estimate
holds for the passive sell order u2.

Theorem 3.6. There is a unique optimal control (η̂, û) ∈ Ut for Problem 2.7.

Proof. Let (ηn, un)n∈N ⊂ Ut be a minimising sequence, i.e.

lim
n→∞

J(ηn, un) = inf
(η,u)∈Ut

J(η, u).

Due to the uniform L2-norm bound of Lemma 3.5 we can then apply the Komlós theorem for
singular stochastic control given in [Kab99] Lemma 3.5. It states the existence of a subsequence
(also indexed by n) that is Cesaro-convergent along with all its further subsequences. In par-
ticular, it provides adapted, non-decreasing and right-continuous processes η̂ : [t, T ] × Ω → R2

+

such that η̂(T, ·) ∈ L1 and the sequence of random measures

η̄n ,
1

n

n∑
i=1

ηi

converges weakly to η̂ in the sense that for almost all ω ∈ Ω the measures η̄n(ω) on [t, T ] converge
weakly to η̂(ω). Similarly, the same arguments as in the proof of Theorem 3.1 in [NW11] yield
a predictable process û : [t, T ]× Ω→ R2

+ such that the sequence

ūn ,
1

n

n∑
i=1

ui

and all its subsequences converges weakly to û. Having established the appropriate measurability
properties, we deduce that (η̂, û) is admissible.

We now prove optimality of the limiting process. Weak convergence of the process (η̄n)n∈N
coupled with equation (3.3) implies that for s ∈ [t, T ] such that ∆η̂(s) = 0 as well as for s = T
we have for i = 1, 2 that

lim
n→∞

X η̄n,ūn

i (s) = lim
n→∞

[
e−ρ1(s−t)x1 + κi

∫
[t,s]

e−ρi(r−t)dη̄ni (r)

]
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=e−ρ1(s−t)xi + κi

∫
[t,s]

e−ρi(r−t)dη̂i(r) = X η̂,û
i (s) P-a.s.

In particular,
lim
n→∞

X η̄n,ūn

i = X η̂,û
i P⊗ λ-a.s.

From the definition of X η̄nūn

i for i = 1, 2 we have dη̄ni (s) =
dXη̄

nūn

i (s)+ρiX
η̄nūn

i (s)ds

κi
. Using the

integration-by-parts formula for Stieltjes integrals we obtain

Et,x,z

[∫
[t,T ]

[
X η̄n,ūn

i (r−) +
κi
2

∆ηi(r)
]
dη̄ni (r)

]

=Et,x,z

[
X η̄n,ūn

i (T )2 − x2
i

2κi
+

∫ T

t

ρ1

κi
X η̄n,ūn

i (r)2dr

]
.

A similar equation holds in the limit with X η̄n,ūn

i replaced by X η̂,û and η̄n replaced by η̂. Hence,
by Fatou’s lemma

Et,x,z

[∫
[t,T ]

[
X η̂,û
i (r−) +

κi
2

∆η̂i(r)
]
dη̂i(r)

]

≤ lim inf
n→∞

Et,x,z

[∫
[t,T ]

[
X η̄n,ūn

i (r−) +
κi
2

∆η̄ni (r)
]
dη̄ni (r)

]
, i = 1, 2.

Let us now consider the costs of deviating from the target function. The dη̄ni -integrals in the

definition of the process X η̄n,ūn

3 again converge P ⊗ λ-a.s. The Poisson integral terms are as in
[NW11]. In the proof of their Theorem 3.6 it is shown that

E
[

sup
t≤s≤T

∫ s

t

|ūni (r)− û(r)| dNi(r)
]

= 0

for i = 1, 2. Passing to a subsequence (again denoted {(η̄n, ūn)}) if necessary we may thus assume

lim
n→∞

sup
t≤s≤T

∫ s

t

|ūni (r)− û(r)| dNi(r) = 0 P-a.s.

to obtain P ⊗ λ-almost sure convergence of X η̄n,ūn

3 to X η̂,û
3 . We can then again apply Fatou’s

lemma to obtain

E

[∫ T

t

h
(
X η̂,û

3 (r)− α(r, Z(r))
)
dr + f

(
X η̂,û

3 (T )− α(T,Z(T ))
)]

≤ lim inf
n→∞

E

[∫ T

t

h
(
X η̄n,ūn

3 (r)− α(r, Z(r))
)
dr + f

(
X η̄n,ūn

3 (T )− α(T,Z(T ))
)]

.

Combining the preceding arguments with the convexity of J gives

J(η̂, û) ≤ lim inf
n→∞

J(η̄n, ūn) ≤ lim inf
n→∞

1

n

n∑
i=1

J(ηi, ui) = inf
(η,u)∈Ut

J(η, u).

Uniqueness of the optimal strategy is due to the strict convexity of (η, u) 7→ J(η, u).

Throughout, we denote by (η̂, û) the optimal control and by X̂ = X η̂,û the optimal state trajec-
tory.
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4. The Stochastic Maximum Principle

In the preceding section we showed that Problem 2.7 admits a unique solution under Assump-
tion 2.9. We shall now prove a version of the stochastic maximum principle which yields a
characterisation of the optimal control in terms of the adjoint equation. In the sequel, we im-
pose Assumption 2.11 and we write E instead of Et,x,z. The adjoint equation is defined as the
following BSDE on [t, T ],P1(s)− P1(t−)

P2(s)− P2(t−)
P3(s)− P3(t−)

 =

∫ s

t

 ρ1P1(r)
ρ2P2(r)

h′(X̂3(r)− α(r, Z(r)))

 dr +

∫ s

t

Q1(r)
Q2(r)
Q3(r)

 dW (r)

+

∫ s

t

R1,1(r)
R1,2(r)
R1,3(r)

 Ñ1(dr) +

∫ s

t

R2,1(r)
R2,2(r)
R2,3(r)

 Ñ2(dr)

+

∫ s

t

∫
Rk

R3,1(r, θ)
R3,2(r, θ)
R3,3(r, θ)

 M̃(dr, dθ)

+

∫
[t,s]

1
0
0

 dη̂1(r) +

∫
[t,s]

0
1
0

 dη̂2(r), (4.1)

P1(T )
P2(T )
P3(T )

 =

 0
0

−f ′(X̂3(T )− α(T,Z(T )))

 .

Remark 4.1. Note that the optimal control η̂ now enters the adjoint equation, which is not
the case in the “usual” formulation of singular control problems, see e.g. [CH94]. We will show
in Section 6 that the solution to the BSDE defined above provides the solution to a reflected
BSDE, where the bid ask spread plays the role of the reflecting barrier.

The adjoint process is then a triple of processes (P,Q,R) defined on [t, T ] (resp. [t, T ]×Rk) by

P (s) ,

P1(s)
P2(s)
P3(s)

 , Q(s) ,

Q1(s)
Q2(s)
Q3(s)

 and R(s, θ) ,

 R1,1(s) R1,2(s) R1,3(s)
R2,1(s) R2,2(s) R2,3(s)

R3,1(s, θ) R3,2(s, θ) R3,3(s, θ)

 ,

which satisfy for i = 1, 2, 3

Pi : [t, T ]× Ω→ R, Qi : [t, T ]× Ω→ Rd,
R1,i : [t, T ]× Ω→ R, R2,i : [t, T ]× Ω→ R, R3,i : [t, T ]× Rk × Ω→ R

and which also satisfy the dynamics (4.1) where P is adapted and Q,R are predictable.

Proposition 4.2. The BSDE (4.1) admits a unique solution which satisfies for i = 1, 2, 3

E
[

sup
t≤s≤T

|Pi(s)|2
]

+ E

[∫ T

t

‖Qi(r)‖2Rddr

]
+ E

[∫ T

t

|R1,i(r)|2dr

]

+E

[∫ T

t

|R2,i(r)|2dr

]
+ E

[∫ T

t

∫
Rk
|R3,i(r, θ)|2m(dθ)dr

]
<∞.

It is unique among triples (P,Q,R) satisfying the above integrability criterion.

Proof. The backward equation (4.1) is a linear BSDE, so standard arguments imply that its
solution can be given in closed form as

P1(s) = E
[
−
∫

(s,T ]
e−ρ1(r−s)dη̂1(r)

∣∣Fs] ,
P2(s) = E

[
−
∫

(s,T ]
e−ρ2(r−s)dη̂2(r)

∣∣Fs] ,
P3(s) = E

[
−
∫ T
s
h′
(
X̂3(r)− α(r, Z(r))

)
dr − f ′

(
X̂3(T )− α(T,Z(T ))

) ∣∣Fs] .
(4.2)
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We refer the reader to [Nau11] Proposition 2.4.2 for details.

The characterisation of the optimal control we shall derive exploits an optimality condition in
terms of the Gâteaux derivative of J . Given controls (η, u), (η̄, ū) ∈ Ut, it is defined as

〈J ′(η̄, ū), (η, u)〉 = lim
ε→0

1

ε
[J (η̄ + εη, ū+ εu)− J(η̄, ū)] .

In our particular case, the Gâteaux derivative can be computed explicitly. This is the content of
the following lemma.

Lemma 4.3. The performance functional J : (η, u) 7→ J(η, u) is Gâteaux differentiable. Its
derivative is given by, for controls (η, u), (η̄, ū) ∈ Ut,

〈J ′(η̄, ū), (η, u)〉

=E
[ ∫

[t,T ]

[
Xη,u

1 (r−)− e−ρ1(r−t)x1 +
κ1

2
∆η1(r)

]
dη̄1(r)

+

∫
[t,T ]

[
Xη,u

2 (r−)− e−ρ2(r−t)x2 +
κ2

2
∆η2(r)

]
dη̄2(r)

+

∫
[t,T ]

[
X η̄,ū

1 (r−) +
κ1

2
∆η̄1(r)

]
dη1(r) +

∫
[t,T ]

[
X η̄,ū

2 (r−) +
κ2

2
∆η̄2(r)

]
dη2(r)

+

∫ T

t

γ1u1(r) + γ2u2(r) +Xη,u
3 (r)h′

(
X η̄,ū

3 (r)− α(r, Z(r))
)
dr

+Xη,u
3 (T )f ′

(
X η̄,ū

3 (T )− α(T,Z(T ))
) ]
.

Proof. The terms involving γi are straightforward. Those involving h and f can be treated
exactly as in [NW11] Lemma 5.3, so it is enough to compute the Gâteaux derivative of

J1(η, u) , E

[∫
[t,T ]

[
X1(r−) +

κ1

2
∆η1(r)

]
dη1(r)

]
.

From equation (3.3) it follows that the map (η, u) 7→ Xη,u
1 is affine, so for s ∈ [t, T ], ε ∈ [0, 1]

and (η, u), (η̄, ū) ∈ Ut we have

X η̄+εη,ū+εu
1 (s) =X η̄,ū

1 (s) + εκ1

∫
[t,s]

e−ρ1(r−t)dη1(r) = X η̄,ū
1 (s) + ε

(
Xη,u

1 (s)− e−ρ1(s−t)x1

)
.

We can now compute

〈J ′1(η̄, ū), (η, u)〉

= lim
ε→0

1

ε
[J1 (η̄ + εη, ū+ εu)− J1(η̄, ū)]

= lim
ε→0

1

ε
E
[ ∫

[t,T ]

[
X η̄+εη,ū+εu

1 (r−) +
κ1

2
∆η̄1(r) + ε

κ1

2
∆η1(r)

]
d (η̄1(r) + εη1(r))

−
∫

[t,T ]

[
X η̄,ū

1 (r−) +
κ1

2
∆η̄1(r)

]
dη̄1(r)

]
= lim
ε→0

1

ε
E
[ ∫

[t,T ]

[
X η̄,ū

1 (r−) + ε
(
Xη,u

1 (r−)− e−ρ1(r−t)x1

)
+
κ1

2
∆η̄1(r) + ε

κ1

2
∆η1(r)

]
dη̄1(r)−

∫
[t,T ]

[
X η̄,ū

1 (r−) +
κ1

2
∆η̄1(r)

]
dη̄1(r)

+ ε

∫
[t,T ]

[
X η̄,ū

1 (r−) + ε
(
Xη,u

1 (r−)− e−ρ1(r−t)x1

)
+
κ1

2
∆η̄1(r) + ε

κ1

2
∆η1(r)

]
dη1(r)

]
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=E
[ ∫

[t,T ]

[
Xη,u

1 (r−)− e−ρ1(r−t)x1 +
κ1

2
∆η1(r)

]
dη̄1(r)

+

∫
[t,T ]

[
X η̄,ū

1 (r−) +
κ1

2
∆η̄1(r)

]
dη1(r)

]
.

This completes the proof.

Our version of the maximum principle is based on an optimality condition on the Gâteaux
derivative. As a prerequisite for some algebraic manipulations of the Gâteaux derivative, let us
now compute d(P · X) for a fixed control (η, u) ∈ Ut. Using integration by parts, we have for
s ∈ [t, T ]

P (s)X(s)− P (t−)X(t−)

=

∫ s

t

X3(r−)h′
(
X̂3(r)− α(r, Z(r))

)
dr

+

∫ s

t

[
λ1u1(r)

(
P3(r) +R1,3(r)

)
− λ2u2(r)

(
P3(r) +R2,3(r)

)]
dr

+

∫ s

t

[
X1(r−)Q1(r) +X2(r−)Q2(r) +X3(r−)Q3(r)

]
dW (r)

+

∫ s

t

[
X1(r−)R1,1(r) +X2(r−)R1,2(r) +X3(r−)R1,3(r) + u1(r)

(
P3(r−) +R1,3(r)

)]
Ñ1(dr)

+

∫ s

t

[
X1(r−)R2,1(r) +X2(r−)R2,2(r) +X3(r−)R2,3(r)− u2(r)

(
P3(r−) +R2,3(r)

)]
Ñ2(dr)

+

∫ s

t

∫
Rk

[
X1(r−)R3,1(r, θ) +X2(r−)R3,2(r, θ) +X3(r−)R3,3(r, θ)

]
M̃(dr, dθ)

+

∫
[t,s]

[
κ1P1(r) + P3(r)

]
dη1(r) +

∫
[t,s]

[
κ2P2(r)− P3(r)

]
dη2(r)

+

∫
[t,s]

X1(r−)dη̂1(r) +

∫
[t,s]

X2(r−)dη̂2(r).

This can be written as

Y η,u(s) = P (t−)X(t−) + Lη,u(s), (4.3)

where we define the “local martingale part” Lη,u for s ∈ [t, T ] by

Lη,u(s) ,
∫ s

t

[
X1(r−)Q1(r) +X2(r−)Q2(r) +X3(r−)Q3(r)

]
dW (r)

+

∫ s

t

[
X1(r−)R1,1(r) +X2(r−)R1,2(r) +X3(r−)R1,3(r)

+ u1(r)
(
P3(r−) +R1,3(r)

)]
Ñ1(dr)

+

∫ s

t

[
X1(r−)R2,1(r) +X2(r−)R2,2(r) +X3(r−)R2,3(r)

− u2(r)
(
P3(r−) +R2,3(r)

)]
Ñ2(dr)

+

∫ s

t

∫
Rk

[
X1(r−)R3,1(r, θ) +X2(r−)R3,2(r, θ) +X3(r−)R3,3(r, θ)

]
M̃(dr, dθ),

and the “non-martingale part” Y η,u for s ∈ [t, T ] by

Y η,u(s) ,P (s)X(s)−
∫ s

t

X3(r)h′
(
X̂3(r)− α(r, Z(r))

)
dr
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−
∫ s

t

[
λ1u1(r)

(
P3(r) +R1,3(r)

)
− λ2u2(r)

(
P3(r) +R2,3(r)

)]
dr

−
∫

[t,s]

[
κ1P1(r) + P3(r)

]
dη1(r)−

∫
[t,s]

[
κ2P2(r)− P3(r)

]
dη2(r)

−
∫

[t,s]

X1(r−)dη̂1(r)−
∫

[t,s]

X2(r−)dη̂2(r).

Let us now check that L is indeed a martingale.

Lemma 4.4. For each (η, u) ∈ Ut, the process Lη,u is a martingale starting in 0.

Proof. We first consider the process
∫ ·
t
X1(r−)Q1(r)dW (r). To prove that it is a true martingale

it is enough to check that

E

[
sup
s∈[t,T ]

∣∣∣∣∫ s

t

X1(r−)Q1(r)dW (r)

∣∣∣∣
]
<∞.

An application of the Burkholder-Davis-Gundy and Hölder inequalities yields

E

[
sup
s∈[t,T ]

∣∣∣∣∫ s

t

X1(r−)Q1(r)dW (r)

∣∣∣∣
]
≤cE

[(∫ T

t

‖X1(r−)Q1(r)‖2Rddr
) 1

2

]

≤cE

[
sup
r∈[t,T ]

|X1(r)|2
] 1

2

E

[∫ T

t

‖Q1(r)‖2Rddr

] 1
2

.

The last expression is finite due to Lemma 3.1 and Proposition 4.2. Now consider the process∫ ·
t

∫
Rk X1(r−)R1(r, θ)M̃(dr, dθ). A Hölder argument as above shows that

E

[∫ T

t

∫
Rk
|X1(r)R1(r, θ)|m(dθ)dr

]
<∞.

The martingale property now follows from [NW11] Lemma A.3. The remaining terms of Lη,u

can be treated similarly.

We are now in a position to formulate our second main result, the stochastic maximum principle
in integral form.

Theorem 4.5. A control (η̂, û) ∈ Ut is optimal if and only if for each (η, u) ∈ Ut we have

E
[ ∫

[t,T ]

[
X̂1(r)− κ1P1(r)− P3(r)

]
d (η1(r)− η̂1(r))

]
≥ 0,

E
[ ∫

[t,T ]

[
X̂2(r)− κ2P2(r) + P3(r)

]
d (η2(r)− η̂2(r))

]
≥ 0,

E
[ ∫ T

t
[u1(r)− û1(r)]

[
R1,3(r) + P3(r)− γ1

λ1

]
dr

]
≤ 0,

E
[ ∫ T

t
[u2(r)− û2(r)]

[
R2,3(r) + P3(r)+ γ2

λ2

]
dr

]
≥ 0.

(4.4)

Proof. We proceed as in [CH94] Theorem 4.1. We are minimising the convex functional J over
Ut, so by [ET99] Proposition 2.2.1 a necessary and sufficient condition for optimality of (η̂, û) is
that

〈J ′(η̂, û), (η − η̂, u− û)〉 ≥ 0 for each (η, u) ∈ Ut.

Due to Lemma 4.4 we know that Lη,u is a martingale starting in zero for each (η, u) ∈ Ut. In
particular from equation (4.3) we have that E[Y η,u(T ) − Y η̂,û(T )] = 0. The definition of Y η,u

together with the terminal condition (4.1) for the adjoint equation allows us to write this as

0 =E
[
f ′
(
X̂3(T )− α(T,Z(T ))

) [
X3(T )− X̂3(T )

]
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+

∫ T

t

h′
(
X̂3(r)− α(r, Z(r))

) [
X3(r)− X̂3(r)

]
dr

+

∫
[t,T ]

[P3(r) + κ1P1(r)] d(η1(r)− η̂1(r)) +

∫
[t,T ]

[−P3(r) + κ2P2(r)] d(η2(r)− η̂2(r))

+

∫
[t,T ]

[
X1(r−)− X̂1(r−)

]
dη̂1(r) +

∫
[t,T ]

[
X2(r−)− X̂2(r−)

]
dη̂2(r)

+ λ1

∫ T

t

[u1(r)− û1(r)] [P3(r) +R1,3(r)] dr − λ2

∫ T

t

[u2(r)− û2(r)] [P3(r) +R2,3(r)] dr

]
.

Combining this with the explicit formula for the Gâteaux derivative given in Proposition 4.3
yields

〈J ′(η̂, û), (η − η̂, u− û)〉

=E
[ ∫

[t,T ]

κ1

2
[∆η1(r)−∆η̂1(r)] dη̂1(r) +

∫
[t,T ]

κ2

2
[∆η2(r)−∆η̂2(r)] dη̂2(r)

+

∫
[t,T ]

[
X̂1(r−) +

κ1

2
∆η̂1(r)− P3(r)− κ1P1(r)

]
d (η1(r)− η̂1(r))

+

∫
[t,T ]

[
X̂2(r−) +

κ2

2
∆η̂2(r) + P3(r)− κ2P2(r)

]
d (η2(r)− η̂2(r))

− λ1

∫ T

t

[u1(r)− û1(r)]

[
P3(r) +R1,3(r)−γ1

λ1

]
dr

+ λ2

∫ T

t

[u2(r)− û2(r)]

[
P3(r) +R2,3(r)+

γ2

λ2

]
dr

]
.

Note that for i = 1, 2 we have, using the notation from equation (2.2),

E
[ ∫

[t,T ]

κi
2

[∆ηi(r)−∆η̂i(r)] dη̂i(r) +

∫
[t,T ]

[
X̂i(r−) +

κi
2

∆η̂i(r)
]
d(ηi(r)− η̂i(r))

]
=E
[ ∫

[t,T ]

X̂i(r−)d(ηi(r)− η̂i(r))

+
κi
2

∑
r∈[t,T ]

[∆ηi(r)−∆η̂i(r)] ∆η̂i(r) + ∆η̂i(r) [∆ηi(r)−∆η̂i(r)]

]

=E
[ ∫

[t,T ]

[
X̂i(r−) + κi∆η̂i(r)

]
d(ηi(r)− η̂i(r))

]
=E
[ ∫

[t,T ]

X̂i(r)d(ηi(r)− η̂i(r))
]
.

Combining the above two displays leads to

〈J ′(η̂, û), (η − η̂, u− û)〉 = E
[ ∫

[t,T ]

[
X̂1(r)− κ1P1(r)− P3(r)

]
d (η1(r)− η̂1(r))

+

∫
[t,T ]

[
X̂2(r)− κ2P2(r) + P3(r)

]
d (η2(r)− η̂2(r))

−λ1

∫ T

t

[u1(r)− û1(r)]

[
P3(r) +R1,3(r)−γ1

λ1

]
dr

+λ2

∫ T

t

[u2(r)− û2(r)]

[
P3(r) +R2,3(r)+

γ2

λ2

]
dr

]
.

We conclude that (η̂, û) is optimal if and only if for all (η, u) ∈ Ut equation (4.4) holds.
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5. Buy, Sell and No-Trade Regions

In the preceding section we derived a characterisation of optimality in terms of all admissible
controls. This condition is not always easy to verify. Therefore, we derive a further characterisa-
tion in the present section, this time in terms of buy, sell and no-trade regions. As a byproduct,
this result shows that spread crossing is optimal if and only if the spread is smaller than some
threshold.

We start with the main result of this section, which provides a necessary and sufficient condition
of optimality in terms of the trajectory of the controlled system(

s, X̂(s), P (s)
)
s∈[t,T ]

.

The proof builds on arguments from [CH94] Theorem 4.2 and extends them to the present
framework where we have jumps and state-dependent singular cost terms.

Theorem 5.1. A control (η̂, û) ∈ Ut is optimal if and only if it satisfies
P
(
X̂1(s)− κ1P1(s)− P3(s) ≥ 0 ∀s ∈ [t, T ]

)
= 1,

P
(
X̂2(s)− κ2P2(s) + P3(s) ≥ 0 ∀s ∈ [t, T ]

)
= 1,

(5.1)

as well as 
P
(∫

[t,T ]
1{X̂1(r)−κ1P1(r)−P3(r)>0}dη̂1(r) = 0

)
= 1,

P
(∫

[t,T ]
1{X̂2(r)−κ2P2(r)+P3(r)>0}dη̂2(r) = 0

)
= 1,

(5.2)

and ds× dP a.e. on [t, T ]× ΩR1,3 + P3− γ1

λ1
≤ 0 and

(
R1,3 + P3− γ1

λ1

)
û1 = 0,

R2,3 + P3+ γ2

λ2
≥ 0 and

(
R2,3 + P3+ γ2

λ2

)
û2 = 0.

(5.3)

Proof. First, let (η̂, û) be optimal and define the stopping time

ν(ω) , inf
{
s ∈ [t, T ] : X̂1(s)− κ1P1(s)− P3(s) < 0

}
,

with the convention inf ∅ ,∞. Consider the control defined by u = û, η2 = η̂2 and

η1(s, ω) , η̂1(s, ω) + 1[ν(ω),T ](s).

Then η1 is equal to η̂1 except for an additional jump of size one at time ν. It also is càdlàg and
increasing on [t, T ]. An application of Theorem 4.5 yields

0 ≤E
[ ∫

[t,T ]

[
X̂1(r)− κ1P1(r)− P3(r)

]
d (η1(r)− η̂1(r))

]
=E
[(
X̂1(ν)− κ1P1(ν)− P3(ν)

)
1{ν≤T}

]
≤ 0,

which implies that P (ν =∞) = 1. This proves the first line of (5.1), the second line follows by
similar arguments. Now consider the control defined by u = û, η2 = η̂2 and{

η1(t−) = 0,

dη1(s, ω) , 1{X̂1(s,ω)−κ1P1(s,ω)−P3(s,ω)≤0}dη̂1(s, ω).
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Then η1 is càdlàg and increasing on [t, T ], since η̂1 is. Due to Theorem 4.5 we have

0 ≤E
[ ∫

[t,T ]

[
X̂1(r)− κ1P1(r)− P3(r)

]
d (η1(r)− η̂1(r))

]
=E
[ ∫

[t,T ]

[
X̂1(r)− κ1P1(r)− P3(r)

]
1{X̂1(r)−κ1P1(r)−P3(r)>0}d (−η̂1(r))

]
≤ 0,

and in particular

0 = E
[ ∫

[t,T ]

1{X̂1(r)−κ1P1(r)−P3(r)>0}dη̂1(r)

]
,

which proves the first part of (5.2), the second part follows by similar arguments. It remains to
prove (5.3). Again by Theorem 4.5 we have for every control (η, u) ∈ Ut

0 ≥ E

[∫ T

t

(u1(r)− û1(r))(R1,3(r) + P3(r)−γ1/λ1)dr

]
.

Choosing the control (η̂, u) with u2 = û2 and

u1(r, ω) = û1(r, ω) + 1{R1,3(r−,ω)+P3(r−,ω)−γ1/λ1>0}

we first note that u1 is predictable and we get

0 ≥ E

[∫ T

t

1{R1,3(r)+P3(r)−γ1/λ1>0}(R1,3(r) + P3(r)−γ1/λ1)dr

]
≥ 0,

which shows that R1,3 +P3−γ1/λ1 ≤ 0 ds×dP a.e. Recall that we also have û1 ≥ 0 by definition.
We now want to show at least one of the processes R1,3 +P3−γ1/λ1 and û1 is zero. To this end,
consider the control (η̂, u) whose passive orders are defined by u1 = 1

2 û1 and u2 = û2. We then
get

0 ≥ E

[∫ T

t

(u1(r)− û1(r))(R1,3(r) + P3(r)−γ1/λ1)dr

]

= E

[∫ T

t

−1

2
û1(r)(R1,3(r) + P3(r)−γ1/λ1)dr

]
≥ 0.

It follows that ds× dP a.e. we have u1(R1,3 +P3−γ1/λ1) = 0. The argument for the second line
in (5.2) is similar. This proves the “only if” part of the assertion.

In order to prove the “if” part, let conditions (5.1), (5.2) and (5.3) be satisfied. We then have
for each (η, u) ∈ Ut

E
[ ∫

[t,T ]

[
X̂1(r)− κ1P1(r)− P3(r)

]
d (η1(r)− η̂1(r))

]
=E
[ ∫

[t,T ]

[
X̂1(r)− κ1P1(r)− P3(r)

]
dη1(r)

]
(5.4)

+ E
[ ∫

[t,T ]

[
X̂1(r)− κ1P1(r)− P3(r)

]
1{X̂1(r)−κ1P1(r)−P3(r)>0}d (−η̂1(r))

]
(5.5)

+ E
[ ∫

[t,T ]

[
X̂1(r)− κ1P1(r)− P3(r)

]
1{X̂1(r)−κ1P1(r)−P3(r)≤0}d (−η̂1(r))

]
. (5.6)

The integrand of (5.4) is nonnegative due to condition (5.1), so (5.4) is nonnegative. The term
(5.5) is zero due to condition (5.2). The term (5.6) has a nonpositive integrand and a decreasing
integrator and is therefore also nonnegative. In conclusion, we have

E
[ ∫

[t,T ]

[
X̂1(r)− κ1P1(r)− P3(r)

]
d (η1(r)− η̂1(r))

]
≥ 0,
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and by a similar argument

E
[ ∫

[t,T ]

[
X̂2(r)− κ2P2(r) + P3(r)

]
d (η2(r)− η̂2(r))

]
≥ 0.

Still for arbitrary (η, u) ∈ Ut we have using (5.3) and u1 ≥ 0

E
[ ∫ T

t

[u1(r)− û1(r)] [R1,3(r) + P3(r)−γ1/λ1] dr

]
= E

[ ∫ T

t

u1(r) [R1,3(r) + P3(r)−γ1/λ1] dr

]
≤ 0.

By a similar argument

E
[ ∫ T

t

[u2(r)− û2(r)] [R2,3(r)− P3(r)+γ2/λ2] dr

]
≤ 0.

An application of Theorem 4.5 now shows that (η̂, û) is indeed optimal.

The preceding theorem gives an optimality condition in terms of the controlled system (P, X̂).
We now show how Theorem 5.1 can be used to describe the optimal market order quite explicitly
in terms of buy, sell and no-trade regions.

Definition 5.2. We define the buy, sell and no-trade regions (with respect to market orders)
by

Rbuy ,
{

(s, x, p) ∈ [t, T ]× R3 × R3 |x1 − κ1p1 − p3 < 0
}
,

Rsell ,
{

(s, x, p) ∈ [t, T ]× R3 × R3 |x2 − κ2p2 + p3 < 0
}
,

Rnt ,
{

(s, x, p) ∈ [t, T ]× R3 × R3 |x1 − κ1p1 − p3 > 0 and x2 − κ2p2 + p3 > 0
}
.

Moreover, we define the boundaries of the buy and sell regions by

∂Rbuy ,
{

(s, x, p) ∈ [t, T ]× R3 × R3 |x1 − κ1p1 − p3 = 0
}
,

∂Rsell ,
{

(s, x, p) ∈ [t, T ]× R3 × R3 |x2 − κ2p2 + p3 = 0
}
.

Let us emphasise that each of the three regions defined above is open. We remark that the
time variable s is included into the definition of the buy, sell and no-trade regions such that
statements like “the trajectory of the process

(
s, X̂(s), P (s)

)
under the optimal control is inside

the no-trade region” make sense. Specifically, we now show that the optimal control remains
inside the closure of the no-trade region at all times, i.e. it is either inside the no-trade region or
on the boundary of the buy or sell region. Moreover, as long as the controlled system is inside
the no-trade region, market orders are not used, i.e. η̂i does not increase for i = 1, 2.

Proposition 5.3. (i) If
(
s, X̂(s), P (s)

)
is in the no-trade region, it is optimal not to use

market orders, i.e. for i = 1, 2

E

[∫
[t,T ]

1{(r,X̂(r),P (r))∈Rnt}dη̂i(r)

]
= 0.

(ii) The optimal trajectory remains a.s. inside the closure of the no-trade region,

P
((
s, X̂(s), P (s)

)
∈ Rnt ∀s ∈ [t, T ]

)
= 1.

In particular, it spends no time inside the buy and sell regions.

Proof. Item (1) is a direct consequence of (5.2), while (2) follows from (5.1).

Example 5.4. The particular case of portfolio liquidation is solved in Section 7. In this case, the
optimal strategy is composed of discrete sell orders at times t = 0, T and a trading rate in (0, T ).
Specifically, these are chosen such that the process

(
s, X̂(s), P (s)

)
remains on the boundary of

the sell region until the passive order is executed and all remaining shares are sold.
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The above proposition shows that the controlled system remains inside the closure of the no-trade
region and market orders are not used inside the no-trade region. This suggests that markets
orders are only used on the boundary, and we shall now make this more precise. To this end,
we first note that for i = 1, 2 the nondecrasing process η̂i induces a measure on [t, T ]×Ω by the
following map

[t, s]×A 7→ E
∫

[t,s]

1Adη̂i(r).

Proposition 5.5. (i) We have

P
(
η̂1(s) =

∫
[t,s]

1{(r,X̂(r),P (r))∈∂Rbuy}dη̂1(r)∀s ∈ [t, T ]

)
= 1.

In particular, the support of the measure induced by η̂1 is a subset of(
r, X̂(r), P (r)

)
∈ ∂Rbuy,

i.e. market buy orders are only used if the controlled system is on the boundary of the buy
region.

(ii) Similarly, we have

P
(
η̂2(s) =

∫
[t,s]

1{(r,X̂(r),P (r))∈∂Rsell}dη̂2(r)∀s ∈ [t, T ]

)
= 1.

In particular, the support of the measure induced by η̂2 is a subset of(
r, X̂(r), P (r)

)
∈ ∂Rsell,

i.e. market sell orders are only used if the controlled system is on the boundary of the sell
region.

Proof. We only show the first assertion. For s ∈ [t, T ] we have using η̂1(t−) = 0

η̂1(s) =

∫
[t,s]

dη̂1(r)

=

∫
[t,s]

[
1{X̂1(r)−κ1P1(r)−P3(r)<0} + 1{X̂1(r)−κ1P1(r)−P3(r)>0} + 1{X̂1(r)−κ1P1(r)−P3(r)=0}

]
dη̂1(r).

We shall show that terms in the second line vanish a.s. By Proposition 5.3 (2) we have

P
((
r, X̂(r), P (r)

)
/∈ Rbuy ∀r ∈ [t, T ]

)
= 1

i.e. the optimal trajectory spends no time in the buy region, so that a.s. for each s ∈ [t, T ]∫
[t,s]

1{X̂1(r)−κ1P1(r)−P3(r)<0}dη̂1(r) =

∫
[t,s]

1{(r,X̂(r),P (r))∈Rbuy}dη̂1(r) = 0.

Due to equation (5.2) we have a.s. for each s ∈ [t, T ]

0 =

∫
[t,T ]

1{X̂1(r)−κ1P1(r)−P3(r)>0}dη̂1(r) ≥
∫

[t,s]

1{X̂1(r)−κ1P1(r)−P3(r)>0}dη̂1(r) ≥ 0,

so that a.s. for each s ∈ [t, T ]∫
[t,s]

1{X̂1(r)−κ1P1(r)−P3(r)>0}dη̂1(r) = 0.

This shows that a.s. for each s ∈ [t, T ] we have

η̂1(s) =

∫
[t,s]

1{X̂1(r)−κ1P1(r)−P3(r)=0}dη̂1(r) =

∫
[t,s]

1{(r,X̂(r),P (r))∈∂Rbuy}dη̂1(r).
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In view of the preceding propositions we have now achieved our main goal, namely to show
when spread crossing is optimal. Specifically, there is a threshold κ1P1 + P3 for the buy spread.
If the buy spread is larger than this threshold, i.e. the controlled system is inside the no-trade
region, then the costs of market buy orders are large as compared to the penalty for deviating
from the target, and no market orders are used. Note that the threshold can be negative, in
this case buying is not optimal at all, irrespective of the spread size. Market orders are only
used to prevent a downward crossing of the threshold and as a result the buy spread is never
smaller than the threshold. In this sense, the trajectory of the controlled system is reflected at
the boundary of the no-trade region. This will be made more precise in Subsection 6 where the
link to reflected BSDEs is discussed. A similar interpretation holds for the sell spread, where the
threshold is given by κ2P2 − P3.

6. Link to Reflected BSDEs

In this section we use the results from the preceding section to show that the adjoint process
together with the optimal control is the solution to a reflected BSDE, where the obstacle is the
spread. The following definition is taken from [ØS10].

Definition 6.1. Let F : [t, T ] × R × Ω → R be a measurable function, L : [t, T ] × Ω → R be
an adapted càdlàg process and G ∈ L2. We say that (P̃ , Q̃, R̃,K) is a solution to the reflected
BSDE with driver F , reflecting barrier L and terminal condition G on the time interval [t, T ] if
the following holds:

(i) P̃ is adapted, Q̃ and R̃ ,

R̃1

R̃2

R̃3

 are predictable and they satisfy

P̃ : [t, T ]× Ω→ R, Q̃ : [t, T ]× Ω→ Rd,

R̃1 : [t, T ]× Ω→ R, R̃2 : [t, T ]× Ω→ R, R̃3 : [t, T ]× Rk × Ω→ R.

(ii) K is nondecreasing and càdlàg with K(t−) = 0.
(iii) For all s ∈ [t, T ] we have

P̃ (s)− P̃ (t−) =

∫ s

t

F (r, P̃ (r))dr +

∫ s

t

Q̃(r)dW (r) +

∫ s

t

R̃(r, θ)Ñ(dθ, dr)−
∫

[t,s]

dK(r),

P̃ (T ) =G.

(iv) We have a.s. for all s ∈ [t, T ] that P̃ (s) ≥ L(s).
(v) We have a.s. that

∫
[t,T ]

(P̃ (r)− L(r))dK(r) = 0.

The interpretation is as follows: By item (iv), the process P̃ is never below the barrier L. Item
(v) means that the process K increases only if P̃ is at the barrier and is flat otherwise. Let us
now define the following linear combinations of the adjoint processes:(

P̄1

P̄2

)
,

(
−κ1P1 − P3

−κ2P2 + P3

)
,

(
Q̄1

Q̄2

)
,

(
−κ1Q1 −Q3

−κ2Q2 +Q3

)
,R̄1,1 R̄1,2

R̄2,1 R̄2,2

R̄3,1 R̄3,2

 ,

−κ1R1,1 −R1,3 − κ2R1,2 +R1,3

−κ1R2,1 −R2,3 − κ2R2,2 +R2,3

−κ1R3,1 −R3,3 − κ2R3,2 +R3,3

 .

Proposition 6.2. The process P̄1, Q̄1,

R̄1,1

R̄2,1

R̄3,1

 , κ1η̂1


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is a solution to the reflected BSDE with driver

−κ1ρ1P1(r)− h′(X̂3(r)− α(r, Z(r))),

reflecting barrier −X̂1 and terminal condition f ′(X̂3(T )− α(T,Z(T ))). Similarly, the processP̄2, Q̄2,

R̄1,2

R̄2,2

R̄3,2

 , κ2η̂2


is a solution to the reflected BSDE with driver

−κ2ρ2P2(r) + h′(X̂3(r)− α(r, Z(r))),

reflecting barrier −X̂2 and terminal condition −f ′(X̂3(T )− α(T,Z(T ))).

Proof. We only check the first assertion. The first two items of Definition 6.1 are clear. Item
(iii) follows from the dynamics of the adjoint process by direct computation. Specifically, we
have for s ∈ [t, T ]

P̄1(s)− P̄1(t−) =− κ1(P1(s)− P1(t−))− (P3(s)− P3(t−))

=

∫ s

t

−κ1ρ1P1(r)− h′
(
X̂3(r)− α(r, Z(r))

)
dr

+

∫ s

t

−κ1Q1(r)−Q3(r)dW (r)

+

∫ s

t

−κ1R1,1(r)−R1,3(r)Ñ1(dr) +

∫ s

t

−κ1R2,1(r)−R2,3(r)Ñ2(dr)

+

∫ s

t

∫
Rk
−κ1R3,1(r, θ)−R3,3(r, θ)M̃(dr, dθ)−

∫
[t,s]

d(κ1η̂1(r)),

P̄1(T ) =− κ1P1(T )− P3(T ) = h′
(
X̂3(T )− α(T,Z(T ))

)
.

Item (4) follows from equation (5.1) in Theorem 5.1. In order to verify item (v) we apply
Proposition 5.5 to get∫

[t,T ]

(P̄1(r) + X̂1(r))d(κ1η̂1(r)) (6.1)

=κ1

∫
[t,T ]

(−κ1P1(r)− P3(r) + X̂1(r))1{X̂1(r)−κ1P1(r)−P3(r)=0}dη̂1(r) = 0.

The second assertion follows from similar arguments.

As our main focus is on a solution to the curve following problem and not on reflected BSDEs,
we shall not pursue this further and instead refer the interested reader to [ØS10], [EKKP+97]
as well as [CM01].

7. Application: Portfolio Liquidation with Singular Control and Passive Orders

In this example section we shall apply the general results on curve following to the portfolio
liquidation problem, where an investor wants to unwind a large position of stock shares in a
short period of time, with as little adverse price impact as possible. Models and solutions have
been proposed among others by [AC01] and [SS08]. Our framework is inspired by [OW05], the
new feature here are the passive orders.

The investor starts with stock holdings X3(0−) = x3 > 0 and wants to sell them such that

X3(T ) = 0. (7.1)
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Fig 2. Stock holdings and trading rate with (red, λ2 = 1) and without (black, λ2 = 0) passive orders. If
there are no passive orders, there are equally sized initial and terminal discrete trades and a constant
trading rate in between. If passive orders are allowed, the initial trade is smaller and the trading rate is
increasing in time. If the passive order is executed, the stock holdings jump to zero. The parameters in
this simulation are T = 2, x3 = 1, ρ2 = 1 and κ2 = 0.01.

The constraint (7.1) ensures that the portfolio is liquidated by maturity. Thus we do not need
to penalise deviation and may choose h = f = α = 0. Heuristically, it should be optimal to use
only market sell and no buy orders, however we allow for both types of orders and then prove
that buying is not optimal. The portfolio liquidation problem with passive orders is

Problem 7.1. Minimise

J(η, u) , E
[ ∫

[0,T ]

[
X1(r−) +

κ1

2
∆η1(r)

]
dη1(r) +

∫
[0,T ]

[
X2(r−) +

κ2

2
∆η2(r)

]
dη2(r)

]
over controls (η, u) ∈ U0 such that X̂3(T ) = 0 .

We introduce a sequence of auxiliary control problems without constraints, but with a penalty
for stock holdings at maturity. For n ∈ N we define

Problem 7.2. Minimise

Jn(η, u) ,E
[ ∫

[0,T ]

[
X1(r−) +

κ1

2
∆η1(r)

]
dη1(r)

+

∫
[0,T ]

[
X2(r−) +

κ2

2
∆η2(r)

]
dη2(r) + nX3(T )2

]
over controls (η, u) ∈ U0.

We first solve the auxiliary control problem.

Proposition 7.3. The solution to Problem 7.2 is given ds× dP a.e. on [0, T ]× Ω by a passive
sell order of size

ûn2 (s) = X̂3(s−),

an initial discrete market sell order of size

∆η̂n2 (0) =
2nλ2ρ2

2neλ2T (λ2 + ρ2)2 + eλ2Tλ2κ2(λ2 + 2ρ2)− 2nρ2
2

x3,

a terminal discrete market sell order of size

∆η̂n2 (T ) =
λ2 + ρ2

ρ2
eλ2T∆η̂n2 (0)1{T<τ2}
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and the following rate of market sell orders in (0, T ),

dη̂n2 (s) = (λ2 + ρ2)eλ2s∆η̂n2 (0)1{s<τ2}ds,

where τ2 denotes the first jump time of the Poisson process N2. Market and passive buy orders
are not used, i.e. a.s. η̂n1 (s) = 0 for each s ∈ [0, T ] and ûn1 = 0 ds× dP a.e. on [0, T ]× Ω.

Proof. The proof proceeds as follows: Taking the candidate optimal control (η̂n, ûn) as given, we
first compute the associated state process and then the adjoint equation. This provides a solution
to the forward backward system and it then only remains to check the optimality conditions
from Theorem 5.1.

The state trajectory associated to the control (η̂n, ûn) is given on [0, T ] by

X̂1(s) = x1e
−ρ1s,

X̂2(s) =


κ2e

λ2s∆η̂n2 (0), if s ≤ τ2 and s < T,

X̂2(τ2)e−ρ2(s−τ2), if τ2 < s,
κ2

ρ2
(λ2 + 2ρ2)eλ2T∆η̂n2 (0), if s = T < τ2,

X̂3(s) =


x3 − λ2+ρ2

λ2
(eλ2s − 1)∆η̂n2 (0), if s < τ2 and s < T,

1
2n

κ2

ρ2
(λ2 + 2ρ2)eλ2T∆η̂n2 (0), if s = T < τ2,

0, if s ≥ τ2.
(7.2)

Note that the stock holdings X̂3 are strictly positive on [0, τ2) and jump to zero at τ2, i.e. if N2

jumps and the passive order is executed. At this instant, the investor stops trading. Afterwards,
the sell spread X̂2 recovers exponentially due to resilience. We will now use the representation
(4.2) to construct the adjoint process. First note that η̂n1 ≡ 0 implies P1 = 0 ds × dP a.e. We
now compute P3. For s ∈ [0, T ] we have using (4.2)

P3(s) =− Es,x
[
2nX̂3(T )

]
.

We know from (7.2) that X̂3 = 0 on the stochastic interval [τ2, T ], so that

P3(s)1{s≥τ2} = 0.

We also have P3(T ) = −2nX̂3(T ). It remains to consider s ∈ [0, τ2 ∧ T ) and for such s we
compute using the exponential density of τ2

P3(s) =− Es,x
[
2nX̂3(T )

]
=− Es,x

[
2n

1

2n

κ2

ρ2
(λ2 + 2ρ2)eλ2T∆η̂n2 (0)1{T<τ2}

]
=− κ2

ρ2
(λ2 + 2ρ2)eλ2T∆η̂n2 (0)

∫ ∞
T

λ2e
−λ2(z−s)dz

=− κ2

ρ2
(λ2 + 2ρ2)eλ2T∆η̂n2 (0)e−λ2(T−s)

=− κ2

ρ2
(λ2 + 2ρ2)eλ2s∆η̂n2 (0).

We now turn to P2. A calculation based on the known form of η̂n2 , the representation (4.2) and
the density of τ2 shows that

P2(s) =Es,x

[
−
∫

(s,T ]

e−ρ2(r−s)dη̂n2 (r)

]

=−
∫ T

s

λ2e
−λ2(z−s)

∫ z

s

eρ2se(λ2−ρ2)r(λ2 + ρ2)∆η̂n2 (0)drdz
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−
∫ ∞
T

λ2e
−λ2(z−s)

{∫ T

s

eρ2se(λ2−ρ2)r(λ2 + ρ2)∆η̂n2 (0)dr

+ eρ2se(λ2−ρ2)T 1

ρ2
(λ2 + ρ2)∆η̂n2 (0)

}
dz

=− λ2 + ρ2

ρ2
eλ2s∆η̂n2 (0).

To sum up, the adjoint process is given explicitly as

P1(s) = 0,

P2(s) =

{
−λ2+ρ2

ρ2
eλ2s∆η̂n2 (0), if s < τ2 and s < T,

0, else,

P3(s) =


−κ2

ρ2
(λ2 + 2ρ2)eλ2s∆η̂n2 (0), if s < τ2 and s < T,

−2nX̂3(T ), if s = T < τ2

0, else.

In particular, Pi is zero on the stochastic interval [τ2, T ] for i = 2, 3.

Having constructed a solution to the forward backward system, we will now use Theorem 5.1
to show that the control (ûn, ξ̂n) is indeed optimal. Using the known form of X̂i and Pi for
i = 1, 2, 3, we check the optimality conditions and compute that a.s.

X̂1(s)− P3(s)− κ1P1(s) = −P3(s) ≥ 0, s ∈ [0, T ]

X̂2(s) + P3(s)− κ2P2(s) = 0, s ∈ [0, τ2 ∧ T ],

X̂2(s) + P3(s)− κ2P2(s) = X̂2(s) ≥ 0, s ∈ (τ2 ∧ T, T ],

so that condition (5.1) is satisfied. In order to check (5.2), we first note that η̂n1 (r) = 0 for each
r ∈ [0, T ] a.s. so that

P
(∫

[0,T ]

1{X̂1(r)−κ1P1(r)−P3(r)>0}dη̂
n
1 (r) = 0

)
= 1.

In addition, we have X̂2 − κ2P2 + P3 = 0 on [0, τ2 ∧ T ] and η̂n2 is constant on [τ2 ∧ T, T ] so that∫
[0,T ]

1{X̂2(r)−κ2P2(r)+P3(r)>0}dη̂
n
2 (r)

=

∫
[0,τ2∧T ]

1{X̂2(r)−κ2P2(r)+P3(r)>0}dη̂
n
2 (r) +

∫
(τ2∧T,T ]

1{X̂2(r)−κ2P2(r)+P3(r)>0}dη̂
n
2 (r) = 0.

Finally, let us check condition (5.3). A consequence of P1 = 0 is that R1,3 = 0 ds× dP a.e. and
we have

R1,3(s) + P3(s−) = P3(s−) ≤ 0 and û1(s) = 0.

If the Poisson process N2 jumps, then P3 jumps to zero, so we have ds× dP a.e. on [0, T ]× Ω

R2,3(s) + P3(s−) = 0.

An application of Theorem 5.1 now yields that (ûn, η̂n) is optimal.

We now proceed to the portfolio liquidation problem with passive orders and terminal constraint.

Proposition 7.4. The solution to Problem 7.1 is given ds× dP a.e. on [0, T ]× Ω by a passive
sell order of size

û2(s) = X̂3(s−),
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an initial discrete market sell order of size

∆η̂2(0) =
λ2ρ2

eλ2T (λ2 + ρ2)2 − ρ2
2

x3,

a terminal discrete market sell order of size

∆η̂2(T ) =
λ2 + ρ2

ρ2
eλ2T∆η̂2(0)1{T<τ2} =

λ2(λ2 + ρ2)eλ2T

eλ2T (λ2 + ρ2)2 − ρ2
2

x31{T<τ2},

and the following rate of market sell orders in (0, T ),

dη̂2(s) = (λ2 + ρ2)eλ2s∆η̂2(0)1{s<τ2}ds =
λ2ρ2(λ2 + ρ2)

eλ2T (λ2 + ρ2)2 − ρ2
2

eλ2sx31{s<τ2}ds,

where τ2 denotes the first jump time of the Poisson process N2. Market and passive buy orders
are not used, i.e. a.s. η̂1(s) = 0 for each s ∈ [0, T ] and û1 = 0 ds× dP a.e. on [0, T ]× Ω.

Proof. We rewrite the performance functional in the following way:

J(η, u) =E
[ ∫

[0,T ]

[
X1(r−) +

κ1

2
∆η1(r)

]
dη1(r)

+

∫
[0,T ]

[
X2(r−) +

κ2

2
∆η2(r)

]
dη2(r) + δ{R\{0}}(X3(T ))

]
.

where δ{R\{0}} is the indicator function in the sense of convex analysis. We then have for each
(η, u) ∈ U0

Jn(η, u) ≤ J(η, u). (7.3)

Moreover, one can check by direct calculation that the strategy (η̂, û) satisfies the liquidation
constraint (7.1), i.e. we have X̂3(T ) = 0 and thus (η̂, û) is admissible. Before we prove the
optimality, let us establish some convergence results. We first note that the optimal strategies
converge in the sense that limn→∞ ûn = û ds×dP a.e. and limn→∞ η̂n(s) = η̂(s) for all s ∈ [0, T ]
a.s. We now show that the associated trading costs also converge. Indeed, using the known form
of X η̂n,ûn

3 (T ) from (7.2) as well as the known form of ∆η̂n2 (0) implies that the terminal costs
satisfy

lim
n→∞

{
nX η̂n,ûn

3 (T )2
}

= lim
n→∞

{
n

[
1

2n

κ2

ρ2
(λ2 + 2ρ2)eλ2T∆η̂n2 (0)

]2

1{T<τ2}

}
= lim
n→∞

{
n

[
1

2n

κ2

ρ2
(λ2 + 2ρ2)eλ2T

2nλ2ρ2

2neλ2T (λ2 + ρ2)2 + eλ2Tλ2κ2(λ2 + 2ρ2)− 2nρ2
2

x3

]2

1{T<τ2}

}
=0.

The integrand of the singular cost term defined in Problem 7.2 converges pointwise in the sense

lim
n→∞

{[
X η̂n,ûn

2 (r−) +
κ2

2
∆η̂n2 (r)

]
dη̂n2 (r)

}
= lim
n→∞

{
X η̂n,ûn

2 (r−)(λ2 + ρ2)eλ2r∆η̂n2 (0)1{r<τ2}dr +
κ2

2
∆η̂n2 (0)2 +

κ2

2
∆η̂n2 (T )2

}
=X̂2(r−)(λ2 + ρ2)eλ2r∆η̂2(0)1{r<τ2}dr +

κ2

2
∆η̂2(0)2 +

κ2

2
∆η̂2(T )2

=
[
X η̂,û

2 (r−) +
κ2

2
∆η̂2(r)

]
dη̂2(r).
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We now apply Fatou’s Lemma together with (7.3) to get for each (η, u) ∈ U0

J(η̂, û) =E
[ ∫

[0,T ]

[
X̂2(r−) +

κ2

2
∆η̂2(r)

]
dη̂2(r)

]
≤ lim inf

n∈N
E
[ ∫

[0,T ]

[
X η̂n,ûn

2 (r−) +
κ2

2
∆η̂n2 (r)

]
dη̂n2 (r) + nX η̂n,ûn

3 (T )2

]
= lim inf

n∈N
Jn(η̂n, ûn) ≤ lim inf

n∈N
Jn(η, u) ≤ J(η, u).

This proves that (η̂, û) is indeed the solution to Problem 7.1.

We conclude with some remarks on the structure of the optimal control.

Remark 7.5. • It is optimal to offer all outstanding shares as a passive order, and simul-
taneously trade using market orders.

• Let us compare the solutions with and without passive orders. If no passive orders are
allowed, it is shown in [OW05] that the optimal control comprises equally sized initial
and terminal discrete trades and a constant trading rate in between. If passive orders are
allowed, it follows from Proposition 7.4 that the initial discrete trade is small and the
investor starts with a small trading rate, which increases as maturity approaches. The
interpretation is that he is reluctant to use market orders and rather waits for passive
order execution. See Figure 2 for an illustration.

• While [OW05] work in a one sided model and only consider market sell orders, we consider
a larger class of controls and allow for both market buy and sell orders. It is a consequence
of Proposition 7.4 that market buy orders are never used.

• The sell region is in this case

Rsell =
{

(s, x, p) ∈ [0, T ]× R3 × R3
∣∣x2 + p3 − κ2p2 < 0

}
.

The initial discrete trade is chosen such that the controlled system jumps to the boundary
of the sell region. Then a rate of market sell orders is chosen such that the state process
remains on this boundary until the passive order is executed.

• The optimal strategy does not depend on the inverse order book height κ2 and is linear in
the initial portfolio size x3 = X3(0−).

• The solution to the portfolio liquidation problem with passive orders given in Proposition
7.4 is similar to the one obtained in [KS09] Proposition 4.2; what they call dark pool can be
interpreted as a passive order in our setup. Note however that they work in discrete time
in a model without spread and resilience. Our solution is also similar to the one obtained
in [NW11] Proposition 7.3, where the portfolio liquidation problem is solved in continuous
time using passive and market, but no discrete orders and without resilience.

• The solution given above only holds for initial spread zero. If we start with a larger spread,
it might be optimal not to use market orders for a certain period of time and wait for the
spread to grow back.

Remark 7.6. As the jump intensity λ2 tends to zero, the solution given in Proposition 7.4 for
the model with passive orders converges to the solution given [OW05] for the model without
passive orders. Specifically we have for s ∈ (0, T )

lim
λ2→0

∆η̂2(0) = lim
λ2→0

λ2ρ2

eλ2T (λ2 + ρ2)2 − ρ2
2

x3 =
x3

ρ2T + 2
,

lim
λ2→0

∆η̂2(T ) = lim
λ2→0

λ2(λ2 + ρ2)eλ2T

eλ2T (λ2 + ρ2)2 − ρ2
2

x3 =
x3

ρ2T + 2
,

lim
λ2→0

dη̂2(s) = lim
λ2→0

λ2ρ2(λ2 + ρ2)

eλ2T (λ2 + ρ2)2 − ρ2
2

eλ2sx3ds =
ρ2x3

ρ2T + 2
ds.
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